Gunslinger3D's picture
fine-tuning-Phi2-with-webglm-qa-with-lora_9
8deea1c verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/phi-2
model-index:
  - name: fine-tuning-Phi2-with-webglm-qa-with-lora_9
    results: []

fine-tuning-Phi2-with-webglm-qa-with-lora_9

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 60
  • training_steps: 700
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.9045 0.16 10 1.6827
1.6798 0.32 20 1.5996
1.5222 0.48 30 1.4548
1.286 0.64 40 1.2269
1.0827 0.8 50 1.1089
0.9913 0.96 60 1.0021
0.881 1.13 70 0.8796
0.7673 1.29 80 0.7637
0.6315 1.45 90 0.6618
0.554 1.61 100 0.5964
0.5132 1.77 110 0.5487
0.4915 1.93 120 0.5030
0.4787 2.09 130 0.4705
0.4298 2.25 140 0.4451
0.4009 2.41 150 0.4099
0.3886 2.57 160 0.3889
0.3729 2.73 170 0.3674
0.3236 2.89 180 0.3527
0.3377 3.05 190 0.3407
0.3356 3.22 200 0.3261
0.3083 3.38 210 0.3121
0.2794 3.54 220 0.2992
0.2917 3.7 230 0.2926
0.2895 3.86 240 0.2879
0.2764 4.02 250 0.2782
0.2585 4.18 260 0.2732
0.2489 4.34 270 0.2678
0.2401 4.5 280 0.2591
0.2489 4.66 290 0.2573
0.2529 4.82 300 0.2501
0.2637 4.98 310 0.2455
0.255 5.14 320 0.2411
0.2266 5.31 330 0.2370
0.2209 5.47 340 0.2326
0.2311 5.63 350 0.2276
0.2203 5.79 360 0.2275
0.2048 5.95 370 0.2210
0.2133 6.11 380 0.2179
0.2045 6.27 390 0.2142
0.2053 6.43 400 0.2137
0.1898 6.59 410 0.2102
0.1897 6.75 420 0.2073
0.2141 6.91 430 0.2040
0.1872 7.07 440 0.2028
0.1938 7.23 450 0.1998
0.187 7.4 460 0.2004
0.1782 7.56 470 0.1973
0.1908 7.72 480 0.1967
0.1899 7.88 490 0.1912
0.1823 8.04 500 0.1912
0.1769 8.2 510 0.1915
0.1774 8.36 520 0.1909
0.1793 8.52 530 0.1890
0.1853 8.68 540 0.1880
0.1785 8.84 550 0.1861
0.1515 9.0 560 0.1845
0.1689 9.16 570 0.1845
0.1552 9.32 580 0.1836
0.1712 9.49 590 0.1828
0.1642 9.65 600 0.1818
0.1703 9.81 610 0.1806
0.1772 9.97 620 0.1804
0.1615 10.13 630 0.1796
0.1494 10.29 640 0.1801
0.1702 10.45 650 0.1798
0.1656 10.61 660 0.1787
0.1688 10.77 670 0.1782
0.1452 10.93 680 0.1780
0.1732 11.09 690 0.1782
0.1719 11.25 700 0.1781

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0