Gemma-Ko-Merge / README.md
Gunulhona's picture
Adding Evaluation Results (#1)
e4a513a verified
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- lemon07r/Gemma-2-Ataraxy-9B
- wzhouad/gemma-2-9b-it-WPO-HB
- rtzr/ko-gemma-2-9b-it
- ghost613/gemma9_on_korean_summary_events
- rtzr/ko-gemma-2-9b-it
model-index:
- name: Gemma-Ko-Merge
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.16
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 38.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.15
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.41
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.12
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.99
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge
name: Open LLM Leaderboard
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the breadcrumbs_ties merge method using [lemon07r/Gemma-2-Ataraxy-9B](https://huggingface.co/lemon07r/Gemma-2-Ataraxy-9B) as a base.
### Models Merged
The following models were included in the merge:
* [wzhouad/gemma-2-9b-it-WPO-HB](https://huggingface.co/wzhouad/gemma-2-9b-it-WPO-HB)
* [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it) + [ghost613/gemma9_on_korean_summary_events](https://huggingface.co/ghost613/gemma9_on_korean_summary_events)
* [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: lemon07r/Gemma-2-Ataraxy-9B
layer_range: [0, 42]
parameters:
weight: 1
density: 0.7
gamma: 0.03
- model: wzhouad/gemma-2-9b-it-WPO-HB
layer_range: [0, 42]
parameters:
weight: 1
density: 0.42
gamma: 0.03
- model: rtzr/ko-gemma-2-9b-it
layer_range: [0, 42]
parameters:
weight: 1
density: 0.42
gamma: 0.03
- model: rtzr/ko-gemma-2-9b-it+ghost613/gemma9_on_korean_summary_events # lora model loading
layer_range: [0, 42]
parameters:
weight: 1
density: 0.42
gamma: 0.03
merge_method: breadcrumbs_ties
base_model: lemon07r/Gemma-2-Ataraxy-9B
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gunulhona__Gemma-Ko-Merge)
| Metric |Value|
|-------------------|----:|
|Avg. |25.94|
|IFEval (0-Shot) |64.16|
|BBH (3-Shot) |38.79|
|MATH Lvl 5 (4-Shot)| 0.15|
|GPQA (0-shot) |11.41|
|MuSR (0-shot) | 9.12|
|MMLU-PRO (5-shot) |31.99|