Hajime Yagihara
commited on
Commit
·
51e04fc
1
Parent(s):
577efb5
Change input_ids in MPTForCausalLM to Optional
Browse files- README.md +1 -0
- modeling_mpt.py +1 -1
README.md
CHANGED
@@ -6,3 +6,4 @@ inference: false
|
|
6 |
|
7 |
このモデルは[MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct)のコードを一部PEFT用に変更したものです。
|
8 |
実験的なものですので使用は個人の判断でお願いします。
|
|
|
|
6 |
|
7 |
このモデルは[MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct)のコードを一部PEFT用に変更したものです。
|
8 |
実験的なものですので使用は個人の判断でお願いします。
|
9 |
+
使用による損害のいかなる責任も負いません。
|
modeling_mpt.py
CHANGED
@@ -281,7 +281,7 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
281 |
return self.transformer
|
282 |
|
283 |
# def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
284 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
285 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
286 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
287 |
# outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
|
|
281 |
return self.transformer
|
282 |
|
283 |
# def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
284 |
+
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
285 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
286 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
287 |
# outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|