File size: 31,039 Bytes
0955f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eaef6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0955f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f0bbf
 
 
 
 
 
 
 
 
0955f14
 
 
 
 
 
 
 
 
 
 
 
 
 
6d717ee
0eaef6c
0955f14
 
 
 
 
 
 
 
 
 
 
6d717ee
a6ecab2
0955f14
 
 
 
 
 
 
6d717ee
0eaef6c
 
 
 
6d717ee
 
 
 
9d37a3a
0eaef6c
0955f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b1a352
9d37a3a
 
9c9bdee
ae3133e
 
7b1a352
ae3133e
 
 
 
 
 
 
7b1a352
ae3133e
 
9c9bdee
 
0eaef6c
 
 
ae3133e
 
7b1a352
0955f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f75964
0955f14
 
 
 
f207752
 
2649aea
0eaef6c
2649aea
0eaef6c
48f62a8
537ea5c
2649aea
0eaef6c
 
7f75964
 
0955f14
 
da8a8f2
2649aea
 
f207752
 
498c07f
0955f14
 
 
 
 
 
 
 
 
6db10a6
498c07f
48f62a8
2649aea
0955f14
 
 
 
 
 
 
 
 
 
da8a8f2
0955f14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
import openai
import chess
import chess.engine
import os
import csv
import random
import time
import platform

# NOTE: LLAMA AND NANOGPT ARE EXPERIMENTAL PLAYERS, if not using them, comment them out
# from llama_module import BaseLlamaPlayer, LocalLlamaPlayer, LocalLoraLlamaPlayer
from nanogpt.nanogpt_module import NanoGptPlayer
from mamba_module import MambaPlayer
import gpt_query
from lczero.backends import Weights, Backend, GameState
import numpy as np

from typing import Optional, Tuple
from dataclasses import dataclass


@dataclass
class LegalMoveResponse:
    move_san: Optional[str] = None
    move_uci: Optional[chess.Move] = None
    attempts: int = 0
    is_resignation: bool = False
    is_illegal_move: bool = False


# Define base Player class
class Player:
    def get_move(self, board: chess.Board, game_state: str, temperature: float) -> str:
        raise NotImplementedError

    def get_config(self) -> dict:
        raise NotImplementedError


class GPTPlayer(Player):
    def __init__(self, model: str):
        with open("gpt_inputs/api_key.txt", "r") as f:
            openai.api_key = f.read().strip()
        self.model = model

    def get_move(
        self, board: chess.Board, game_state: str, temperature: float
    ) -> Optional[str]:
        response = get_gpt_response(game_state, self.model, temperature)
        return get_move_from_gpt_response(response)

    def get_config(self) -> dict:
        return {"model": self.model}
        
        
class LC0PLayer(Player):
    # "11258-32x4-se.pb.gz" = stockfish level 0- = skill 0
    # "11258-48x5-se.pb.gz" = stockfish level 0+ = skill 1
    # "11258-80x7-se.pb.gz" = stockfish level 1 = skill 2
    # "11258-104x9-se.pb.gz" = stockfish level 2 = skill 3
    # "TK-6430 aka 128x10-BPR-64M-6430000.pb.gz" = stockfish level 3 = skill 4
    # "00af53b081e80147172e6f281c01daf5ca19ada173321438914c730370aa4267" = stockfish level 4 = skill 5
    # "b2ec465d0fb5b5eb39d2e1e3f74041a5d2fc92d413b71aa7ea0b6fb082ccba9c" = stockfish level 5+ = skill 6
    def __init__(self, skill):
        self.skill = skill
        network_paths = ["./lc0/build/release/11258-32x4-se.pb.gz", "./lc0/build/release/11258-48x5-se.pb.gz", "./lc0/build/release/11258-80x7-se.pb.gz", "./lc0/build/release/11258-104x9-se.pb.gz", "./lc0/build/release/TK-6430 aka 128x10-BPR-64M-6430000.pb.gz", "./lc0/build/release/00af53b081e80147172e6f281c01daf5ca19ada173321438914c730370aa4267", "./lc0/build/release/b2ec465d0fb5b5eb39d2e1e3f74041a5d2fc92d413b71aa7ea0b6fb082ccba9c"]
        print(f"\n\nLoading lc0 network: {network_paths[skill]}\n\n")
        self.weights = Weights(network_paths[skill])
        self.backend = Backend(weights=self.weights)
        self.gamestate = GameState()

    def get_move(self, board: chess.Board, game_state: str, temperature: float):
        self.gamestate = GameState(fen=board.fen())
        input_planes = self.gamestate.as_input(self.backend)
        result = self.backend.evaluate(input_planes)[0]
        moves = self.gamestate.moves()
        policy_indices = self.gamestate.policy_indices()
        move_probs = np.array(result.p_softmax(*policy_indices))
        best_move_idx = move_probs.argmax()
        best_move = moves[best_move_idx]
        return board.san(chess.Move.from_uci(best_move))
        
    def get_config(self) -> dict:
        return {"network": self.weights, "skill_level": self.skill, "play_time": 0}


class StockfishPlayer(Player):

    @staticmethod
    def get_stockfish_path() -> str:
        """
        Determines the operating system and returns the appropriate path for Stockfish.
        
        Returns:
            str: Path to the Stockfish executable based on the operating system.
        """
        if platform.system() == 'Linux':
            return "/usr/games/stockfish"
        elif platform.system() == 'Darwin':  # Darwin is the system name for macOS
            return "stockfish"
        elif platform.system() == 'Windows':
            return r"C:\Users\Haile\Downloads\stockfish\stockfish-windows-x86-64-avx2.exe"
        else:
            raise OSError("Unsupported operating system")
    
    def __init__(self, skill_level: int, play_time: float):
        self._skill_level = skill_level
        self._play_time = play_time
        # If getting started, you need to run brew install stockfish
        stockfish_path = StockfishPlayer.get_stockfish_path()
        self._engine = chess.engine.SimpleEngine.popen_uci(stockfish_path)

    def get_move(
        self, board: chess.Board, game_state: str, temperature: float
    ) -> Optional[str]:
        if self._skill_level == -2:
            legal_moves = list(board.legal_moves)
            random_move = random.choice(legal_moves)
            return board.san(random_move)
        elif self._skill_level < 0:
            self._engine.configure({"Skill Level": 0})
            result = self._engine.play(
                board, chess.engine.Limit(time=1e-8, depth=1, nodes=1)
            )

        else:
            self._engine.configure({"Skill Level": self._skill_level})
            result = self._engine.play(board, chess.engine.Limit(time=self._play_time))
        if result.move is None:
            return None
        return board.san(result.move)

    def get_config(self) -> dict:
        return {"skill_level": self._skill_level, "play_time": self._play_time}

    def close(self):
        self._engine.quit()
        
        
class HumanPlayer(Player):
    def get_move(self, board: chess.Board, game_state: str, temperature: float) -> str:
        # Print board for human player
        print(board)  
        while True:
            move = input("Enter your move (SAN format): ")
            try:
                move_uci = board.parse_san(move) 
                if move_uci in board.legal_moves:  
                    return move
            except:
                print("Illegal move, try again.")

    def get_config(self) -> dict:
        return {"player": "human"}


def get_gpt_response(game_state: str, model: str, temperature: float) -> Optional[str]:
    # trying to prevent what I believe to be rate limit issues
    if model == "gpt-4":
        time.sleep(0.4)
    response = gpt_query.get_gpt_response(game_state, model, temperature)
    return response


def get_move_from_gpt_response(response: Optional[str]) -> Optional[str]:
    if response is None:
        return None

    # Parse the response to get only the first move
    moves = response.split()
    first_move = moves[0] if moves else None

    return first_move


def calculate_stats(csv_file_path):
    data = []
    with open(csv_file_path, "r") as csv_file:
        reader = csv.DictReader(csv_file)
        data = list(reader)

    if not data:
        return None

    stats = {
        "wins": sum(float(row["player_one_score"]) for row in data if float(row["player_one_score"]) > 0.6),
        "draws": len(data) - sum(float(row["player_two_score"]) for row in data if float(row["player_two_score"]) > 0.6) - sum(float(row["player_one_score"]) for row in data if float(row["player_one_score"]) > 0.6),
        "illegal_attempts_ratio": sum(float(row["p1_illegal_attempts"]) for row in data) / (sum(float(row["p1_illegal_attempts"]) for row in data) + sum(float(row["player_one_legal_moves"]) for row in data)),
        "illegal_moves_ratio": sum(float(row["player_one_illegal_moves"]) for row in data) / sum(float(row["player_one_illegal_moves"]) + float(row["player_one_legal_moves"]) for row in data),
        "avg_attempts_per_illegal": sum(float(row["p1_avg_attempts_per_illegal"]) for row in data) / len(data),
        "avg_first_illegal_move": sum(float(row["p1_first_illegal_move_num"]) for row in data if float(row["p1_first_illegal_move_num"]) > 0) / len([row for row in data if float(row["p1_first_illegal_move_num"]) > 0]),
        "avg_illegal_move_num": sum(float(row["p1_avg_illegal_move_num"]) for row in data if float(row["p1_avg_illegal_move_num"]) > 0) / len([row for row in data if float(row["p1_avg_illegal_move_num"]) > 0]),
        "lost_to_illegal_ratio": len([row for row in data if row["player_one_failed_to_find_legal_move"] == "True"]) / len([row for row in data if float(row["number_of_moves"]) > 0]),
        "avg_game_length": sum(float(row["number_of_moves"]) for row in data) / len(data),
        "max_game_length": max(float(row["number_of_moves"]) for row in data),
    }

    return stats


def record_results(
    board: chess.Board,
    player_one: Player,
    player_two: Player,
    game_state: str,
    player_one_illegal_moves: int,
    player_one_illegal_attempts: int,
    player_two_illegal_moves: int,
    player_one_legal_moves: int,
    player_two_legal_moves: int,
    total_time: float,
    player_one_resignation: bool,
    player_two_resignation: bool,
    player_one_failed_to_find_legal_move: bool,
    player_two_failed_to_find_legal_move: bool,
    total_moves: int,
    illegal_moves: int,
    opening_moves: int,
    illegal_move_numbers: list[int]
):
    unique_game_id = generate_unique_game_id()

    (
        player_one_title,
        player_two_title,
        player_one_time,
        player_two_time,
    ) = get_player_titles_and_time(player_one, player_two)

    if player_one_resignation or player_one_failed_to_find_legal_move:
        result = "0-1"
        player_one_score = 0
        player_two_score = 1
    elif player_two_resignation or player_two_failed_to_find_legal_move:
        result = "1-0"
        player_one_score = 1
        player_two_score = 0
    else:
        result = board.result()
        # Hmmm.... debating this one. Annoying if I leave it running and it fails here for some reason, probably involving some
        # resignation / failed move situation I didn't think of
        # -1e10 at least ensures it doesn't fail silently
        if "-" in result:
            player_one_score = result.split("-")[0]
            player_one_score = 0.5 if player_one_score == "1/2" else player_one_score
            player_two_score = result.split("-")[1]
            player_two_score = 0.5 if player_two_score == "1/2" else player_two_score
        elif result == "*": # Loss due to hitting max moves
            player_one_score = 0
            player_two_score = 1
        else:
            player_one_score = -1e10
            player_two_score = -1e10

    played_moves = player_one_illegal_moves + player_one_legal_moves
    info_dict = {
        "game_id": unique_game_id,
        "transcript": game_state,
        "result": result,
        "player_one": player_one_title,
        "player_two": player_two_title,
        "player_one_time": player_one_time,
        "player_two_time": player_two_time,
        "player_one_score": player_one_score,
        "player_two_score": player_two_score,
        "player_one_illegal_moves": player_one_illegal_moves,
        "player_two_illegal_moves": player_two_illegal_moves,
        "player_one_legal_moves": player_one_legal_moves,
        "player_two_legal_moves": player_two_legal_moves,
        "player_one_resignation": player_one_resignation,
        "player_two_resignation": player_two_resignation,
        "player_one_failed_to_find_legal_move": player_one_failed_to_find_legal_move,
        "player_two_failed_to_find_legal_move": player_two_failed_to_find_legal_move,
        "game_title": f"{player_one_title} vs. {player_two_title}",
        "number_of_moves": board.fullmove_number,
        "p1_illegal_attempts": player_one_illegal_attempts,
        "p1_avg_attempts_per_illegal": 0 if player_one_illegal_moves == 0 else player_one_illegal_attempts / float(player_one_illegal_moves),
        "p1_illegal_attemtps_pct": 1.0 if played_moves == 0 else player_one_illegal_attempts / float(player_one_illegal_attempts + player_one_legal_moves),
        "p1_illegal_moves_pct": 1.0 if played_moves == 0 else player_one_illegal_moves / float(played_moves),
        "p1_first_illegal_move_num": illegal_move_numbers[0] if illegal_move_numbers else 0,
        "p1_avg_illegal_move_num": np.average(illegal_move_numbers) if illegal_move_numbers else 0,
        "time_taken": total_time,
        "total_moves": total_moves,
        "illegal_moves": illegal_moves,
    }

    if RUN_FOR_ANALYSIS:
        csv_file_path = f"logs/{player_one_recording_name}_vs_{player_two_recording_name}"
        csv_file_path = csv_file_path.replace(".", "_") # Because I'm using ckpt filenames for nanogpt models 
        csv_file_path += ".csv"
    else:
        csv_file_path = recording_file



    # Determine if we need to write headers (in case the file doesn't exist yet)
    write_headers = not os.path.exists(csv_file_path)

    # Append the results to the CSV file
    os.makedirs(os.path.dirname(csv_file_path), exist_ok=True)
    with open(csv_file_path, "a", newline="") as csv_file: 
        writer = csv.DictWriter(csv_file, fieldnames=info_dict.keys())
        if write_headers:
            writer.writeheader()
        writer.writerow(info_dict)

    with open("game.txt", "w") as f:
        f.write(game_state)


def generate_unique_game_id() -> str:
    timestamp = int(time.time())
    random_num = random.randint(1000, 9999)  # 4-digit random number
    return f"{timestamp}-{random_num}"


def get_player_titles_and_time(
    player_one: Player, player_two: Player
) -> Tuple[str, str, Optional[float], Optional[float]]:
    player_one_config = player_one.get_config()
    player_two_config = player_two.get_config()

    # For player one
    if "model" in player_one_config:
        player_one_title = player_one_config["model"]
        player_one_time = None
    else:
        player_one_title = f"Stockfish {player_one_config['skill_level']}"
        player_one_time = player_one_config["play_time"]

    # For player two
    if "model" in player_two_config:
        player_two_title = player_two_config["model"]
        player_two_time = None
    else:
        player_two_title = f"Stockfish {player_two_config['skill_level']}"
        player_two_time = player_two_config["play_time"]

    return (player_one_title, player_two_title, player_one_time, player_two_time)


used_openings = []
def random_book_opening(
    game_state: str, board: chess.Board
) -> Tuple[str, chess.Board]:
    global used_openings
    with open("openings.csv", "r") as file:
        lines = file.readlines()[1:]  # Skip header
    moves_string = random.choice(lines)
    while moves_string in used_openings:
        moves_string = random.choice(lines)
    used_openings.append(moves_string)
    if move_num_in_gamestate:
        game_state = moves_string.rstrip() + " "
    else:
        game_state = ' '.join(['.' + m.split(".")[-1] if "." in m else m for m in moves_string.split()])
        game_state = game_state.rstrip() + " "
    # Splitting the moves string on spaces
    tokens = moves_string.split()

    for token in tokens:
        # If the token contains a period, it's a move number + move combination
        if "." in token:
            move = token.split(".")[-1]  # Take the move part after the period
        else:
            move = token

        board.push_san(move)
    return game_state.rstrip(), board, len(tokens) // 2


def add_random_moves(
    game_state: str, board: chess.Board, num_moves: int = 20
) -> Tuple[str, chess.Board, int]:
    for i in range(num_moves * 2):  # Full moves to half moves
        legal_moves = list(board.legal_moves)
        if not legal_moves:
            print("Random moves: no legal moves left.")
            return None, None, 0  # Game over, discard the game

        move = board.san(random.choice(legal_moves))
        board.push(board.parse_san(move))

        if board.turn == chess.BLACK:
            game_state += f" {i//2 + 1}.{move}" if move_num_in_gamestate else f" .{move}"
        else:
            game_state += f" {move}"

        if board.is_game_over():
            print("Random moves: game over.")
            return None, None, 0  # Game over, discard the game

    game_state = game_state.strip()
    print(f"{num_moves} Random moves added, returning: {game_state}")
    return game_state, board, num_moves


def evaluate_position(fen, backend):
    gamestate = GameState(fen=fen)
    result = backend.evaluate(gamestate.as_input(backend))[0]
    return result.q()


def material_balance(board):
    PV = {
        'pawn': 1,
        'knight': 3,
        'bishop': 3,
        'rook': 5,
        'queen': 9,
        'king': 0
    }
    
    if board.is_insufficient_material():
        return 0

    wp = len(board.pieces(chess.PAWN, chess.WHITE))
    bp = len(board.pieces(chess.PAWN, chess.BLACK))

    wn = len(board.pieces(chess.KNIGHT, chess.WHITE))
    bn = len(board.pieces(chess.KNIGHT, chess.BLACK))

    wb = len(board.pieces(chess.BISHOP, chess.WHITE))
    bb = len(board.pieces(chess.BISHOP, chess.BLACK))

    wr = len(board.pieces(chess.ROOK, chess.WHITE))
    br = len(board.pieces(chess.ROOK, chess.BLACK))

    wq = len(board.pieces(chess.QUEEN, chess.WHITE))
    bq = len(board.pieces(chess.QUEEN, chess.BLACK))

    return (
        PV['pawn'] * (wp - bp) +
        PV['knight'] * (wn - bn) +
        PV['bishop'] * (wb - bb) +
        PV['rook'] * (wr - br) +
        PV['queen'] * (wq - bq)
    )


# Return is (move_san, move_uci, attempts, is_resignation, is_illegal_move)
def get_legal_move(
    player: Player,
    board: chess.Board,
    game_state: str,
    player_one: bool,
    max_attempts: int = 5,
) -> LegalMoveResponse:
    """Request a move from the player and ensure it's legal."""
    move_san = None
    move_uci = None

    for attempt in range(max_attempts):
        #print(f"get_legal_move: |{game_state}|")
        move_san = player.get_move(
            board, game_state, min(((attempt / max_attempts) * 1) + 0.001, 0.75)
        )

        # Sometimes when GPT thinks it's the end of the game, it will just output the result
        # Like "1-0". If so, this really isn't an illegal move, so we'll add a check for that.
        if move_san is not None:
            if move_san == "1-0" or move_san == "0-1" or move_san == "1/2-1/2":
                print(f"{move_san}, player has resigned")
                return LegalMoveResponse(
                    move_san=None,
                    move_uci=None,
                    attempts=attempt,
                    is_resignation=True,
                )

        try:
            move_uci = board.parse_san(move_san)
        except Exception as e:
            print(f"Error parsing move {move_san}: {e}")
            # check if player is gpt-3.5-turbo-instruct
            # only recording errors for gpt-3.5-turbo-instruct because it's errors are so rare
            if player.get_config()["model"] == "gpt-3.5-turbo-instruct":
                with open("gpt-3.5-turbo-instruct-illegal-moves.txt", "a") as f:
                    f.write(f"{game_state}\n{move_san}\n")
            continue

        if move_uci in board.legal_moves:
            if player_one == False:
                if not move_san.startswith(" "):
                    move_san = " " + move_san
            else:
                if move_san.startswith(" "):
                    move_san = move_san[1:]
            return LegalMoveResponse(move_san, move_uci, attempt)
        print(f"Illegal move: {move_san}")

    # If we reach here, the player has made illegal moves for all attempts.
    print(f"{player} provided illegal moves for {max_attempts} attempts.")
    return LegalMoveResponse(
        move_san=None, move_uci=None, attempts=max_attempts, is_illegal_move=True
    )


def play_turn(
    player: Player, board: chess.Board, game_state: str, player_one: bool
) -> Tuple[str, bool, bool, int]:
    result = get_legal_move(player, board, game_state, player_one, 5)
    illegal_moves = result.attempts
    move_san = result.move_san
    move_uci = result.move_uci
    resignation = result.is_resignation
    failed_to_find_legal_move = result.is_illegal_move

    if resignation:
        print(f"{player} resigned with result: {board.result()}")
    elif failed_to_find_legal_move:
        print(f"Game over: 5 consecutive illegal moves from {player}")
    elif move_san is None or move_uci is None:
        print(f"Game over: {player} failed to find a legal move")
    else:
        board.push(move_uci)
        game_state += move_san
        print(move_san, end=" ")

    return game_state, resignation, failed_to_find_legal_move, illegal_moves


def play_games(
    player_one: Player,
    player_two: Player,
    max_games: int = 10,
    book_opening: bool = False,
    random_opening: bool = False,
    random_opening_moves: int = 20,
    random_move_start: int = 0,
):
    unique_games = set()
    games_saved = 0
    while games_saved < max_games:
        print(f"\nGame {games_saved} of {max_games}\n")
    
    #    with open("gpt_inputs/prompt.txt", "r") as f:
     #       game_state = f.read()
        game_state = ""
        board = chess.Board()

        if book_opening:
            game_state, board, opening_moves = random_book_opening(game_state, board)
        elif random_opening:
            for _ in range(10):
                g, b, opening_moves = add_random_moves(game_state, board, random_opening_moves)
                if g is not None:
                    game_state = g
                    board = b
                    break
        else:
            opening_moves = 0
        player_one_illegal_moves = 0
        player_one_illegal_attempts = 0
        player_two_illegal_moves = 0
        player_one_legal_moves = 0
        player_two_legal_moves = 0
        player_one_resignation = False
        player_two_resignation = False
        player_one_failed_to_find_legal_move = False
        player_two_failed_to_find_legal_move = False
        start_time = time.time()

        total_moves = 0
        illegal_moves = 0
        illegal_move_numbers = []
        print_for_human = isinstance(player_one, HumanPlayer) or isinstance(player_two, HumanPlayer)

        while not board.is_game_over():
            if print_for_human:
                print(board)

            with open("game.txt", "w") as f:
                f.write(game_state)
            current_move_num = f"{board.fullmove_number if move_num_in_gamestate else ''}."

            #if total_moves == random_move_start:
            #    for _ in range(10):
            #        g, b, opening_moves = add_random_moves(game_state, board, random_opening_moves)
            #        if g is not None:
            #            game_state = g
            #            board = b
            #            break
            #    total_moves += random_opening_moves
            #    continue


            total_moves += 1
            # I increment legal moves here so player_two isn't penalized for the game ending before its turn
            player_one_legal_moves += 1
            player_two_legal_moves += 1

            # this if statement may be overkill, just trying to get format to exactly match PGN notation
            if board.fullmove_number != 1:
                game_state += " "
            game_state += current_move_num
            #print(f"|{game_state}|")
            #print(f"{current_move_num}", end=" ")

            if update_linear or eval_linear:
                prev_q_value = evaluate_position(board.fen(), player_two.backend)
            (
                game_state,
                player_one_resignation,
                player_one_failed_to_find_legal_move,
                illegal_moves_one,
            ) = play_turn(player_one, board, game_state, player_one=True)
            player_one_illegal_moves  += 1 if illegal_moves_one > 0 else 0
            player_one_illegal_attempts += illegal_moves_one
            if illegal_moves_one != 0:
                player_one_legal_moves -= 1
                illegal_move_numbers.append(board.fullmove_number)
            if update_activations or update_linear or eval_linear:
                player_one.update_activations("current")
            if (
                board.is_game_over()
                or player_one_resignation
                or player_one_failed_to_find_legal_move
            ):
                break

            if update_linear or eval_linear:
                curr_q_value = evaluate_position(board.fen(), player_two.backend)
                q_value_delta = curr_q_value - prev_q_value
                material_bal = material_balance(board)
                player_one.update_linear_probe_targets(curr_q_value, q_value_delta, material_bal)
                if update_linear:
                    player_one.train_linear_probes()
                if eval_linear:
                    player_one.evaluate_linear_probes(board)
                player_one.update_activations("reset")
            
            (
                game_state,
                player_two_resignation,
                player_two_failed_to_find_legal_move,
                illegal_moves_two,
            ) = play_turn(player_two, board, game_state, player_one=False)
            player_two_illegal_moves  += 1 if illegal_moves_two > 0 else 0
            if illegal_moves_two != 0:
                player_two_legal_moves -= 1
            if (
                board.is_game_over()
                or player_two_resignation
                or player_two_failed_to_find_legal_move
            ):
                break

            print("\n", end="")

            if total_moves > MAX_MOVES:
                break

        end_time = time.time()
        total_time = end_time - start_time
        print(f"\nGame over. Total time: {total_time} seconds")
        print(f"Result: {board.result()}")
        print(board)
        print()
        game_transcript = game_state.strip()
        if game_transcript not in unique_games:
            unique_games.add(game_transcript)
            record_results(
                board,
                player_one,
                player_two,
                game_state,
                player_one_illegal_moves,
                player_one_illegal_attempts,
                player_two_illegal_moves,
                player_one_legal_moves,
                player_two_legal_moves,
                total_time,
                player_one_resignation,
                player_two_resignation,
                player_one_failed_to_find_legal_move,
                player_two_failed_to_find_legal_move,
                total_moves,
                illegal_moves,
                opening_moves,
                illegal_move_numbers
            )
            games_saved += 1

            #if update_linear:
            #    player_one.train_linear_probes()
                
            if update_activations:
                if player_one_resignation or player_one_failed_to_find_legal_move:
                    player_one.update_activations("lost")
                elif player_two_resignation or player_two_failed_to_find_legal_move:
                    player_one.update_activations("won")
                else:
                    if board.result() == "1-0":
                        player_one.update_activations("won")
                    elif board.result() == "0-1":
                        player_one.update_activations("lost")
        
                if games_saved % save_activations_every == 0:
                    player_one.save_activations(activations_path)
            elif update_linear:
                player_one.update_activations("reset")

            if update_linear and games_saved % save_activations_every == 0:
                player_one.save_linear_probe_data(linear_path)
        else:
            print("Duplicate game; not saved.")
            
    if isinstance(player_one, StockfishPlayer):
        player_one.close()
    if isinstance(player_two, StockfishPlayer):
        player_two.close()

    if RUN_FOR_ANALYSIS:
        csv_file_path = f"logs/{player_one_recording_name}_vs_{player_two_recording_name}"
        csv_file_path = csv_file_path.replace(".", "_") # Because I'm using ckpt filenames for nanogpt models 
        csv_file_path += ".csv"
    else:
        csv_file_path = recording_file
    stats = calculate_stats(csv_file_path)
    if stats:
        print("\nStatistics:")
        for key, value in stats.items():
            print(f"{key}: {value}")
        
        with open(csv_file_path, "a") as csv_file:
            writer = csv.writer(csv_file)
            writer.writerow([""] * 19)  # Add empty cells for existing columns
            writer.writerow(list(stats.keys()))
            writer.writerow(list(stats.values()))


RUN_FOR_ANALYSIS = True
MAX_MOVES = 60 #999 # Due to nanogpt max input length of 1024
recording_file = "logs/determine.csv" # default recording file. Because we are using list [player_ones], recording_file is overwritten
player_ones = ["50M/anneal/anneal_complete_round3.pt"]
player_two_recording_name = "lc0_sweep" #"stockfish_sweep"
move_num_in_gamestate = False
book_opening = True
random_opening = False
random_opening_moves = 10

activations_path="activations_rdm.pkl"
update_activations = False
apply_activations = False
save_activations_every = 25
contrastive_weight = 0.8

linear_path="linear.pkl"
update_linear = False
eval_linear = True
if __name__ == "__main__":
    for nanogpt_player in player_ones:
        i = 0
        rm = 10
#        for rm in range(5, 36, 5):
        for i in [0]: # [3] #range(11):
#        for wgt in [0.005, 0.01, 0.025, 0.05]:
            num_games = 5000
            # player_one = GPTPlayer(model="gpt-3.5-turbo-instruct")
            # player_one = LocalLlamaPlayer(model_name="meta-llama/Llama-2-7b-hf")
            # player_one = LocalLoraLlamaPlayer("meta-llama/Llama-2-7b-hf", "/workspace/axolotl/lora2-out")
            # player_one = GPTPlayer(model="gpt-4")
            # player_one = StockfishPlayer(skill_level=-1, play_time=0.1)
            
            player_one_recording_name = nanogpt_player
#            player_one = NanoGptPlayer(model_name=player_one_recording_name, move_num_in_gamestate=move_num_in_gamestate)
            #player_one_recording_name = f"xformer_rdm_{rm}"
            player_one = MambaPlayer(model_name=player_one_recording_name, move_num_in_gamestate=move_num_in_gamestate, update_contrastive=update_activations, update_linear=update_linear or eval_linear, linear_probe_path=linear_path)
            player_one_recording_name = f'linear_train'
            if apply_activations:
                player_one.apply_contrastive_activations(path=activations_path, weight=wgt)

            #player_two = StockfishPlayer(skill_level=i, play_time=0.1)
            player_two = LC0PLayer(skill=i)
            
            # player_two = GPTPlayer(model="gpt-4")
            # player_two = GPTPlayer(model="gpt-3.5-turbo-instruct")
            
            #print(f"\n\nSTARTING GAMES AGAINST STOCKFISH LEVEL {i}\n\n")
            print(f"\n\nSTARTING GAMES AGAINST LC0 LEVEL {i}\n\n")

            play_games(player_one, player_two, num_games, book_opening=book_opening, random_opening=random_opening, random_opening_moves=rm)