File size: 9,343 Bytes
4eba019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bd1fa
 
4eba019
28bd1fa
 
 
 
 
4eba019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bd1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eba019
 
 
 
 
 
a8f71d2
4eba019
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3293
- Answer: {'precision': 0.11451135241855874, 'recall': 0.1433868974042027, 'f1': 0.12733260153677278, 'number': 809}
- Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
- Question: {'precision': 0.41704374057315236, 'recall': 0.5192488262910798, 'f1': 0.46256796319531585, 'number': 1065}
- Overall Precision: 0.2860
- Overall Recall: 0.3357
- Overall F1: 0.3089
- Overall Accuracy: 0.5623

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                        | Header                                                                                                          | Question                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.9774        | 1.0   | 10   | 1.9285          | {'precision': 0.018331226295828066, 'recall': 0.03584672435105068, 'f1': 0.024257632789627767, 'number': 809} | {'precision': 0.00787878787878788, 'recall': 0.1092436974789916, 'f1': 0.014697569248162805, 'number': 119}     | {'precision': 0.06559356136820925, 'recall': 0.15305164319248826, 'f1': 0.09183098591549295, 'number': 1065} | 0.0359            | 0.1029         | 0.0532     | 0.1843           |
| 1.8918        | 2.0   | 20   | 1.8488          | {'precision': 0.02769385699899295, 'recall': 0.06798516687268233, 'f1': 0.03935599284436494, 'number': 809}   | {'precision': 0.003703703703703704, 'recall': 0.008403361344537815, 'f1': 0.0051413881748071984, 'number': 119} | {'precision': 0.07554585152838428, 'recall': 0.1624413145539906, 'f1': 0.10312965722801788, 'number': 1065}  | 0.0504            | 0.1149         | 0.0700     | 0.2606           |
| 1.8117        | 3.0   | 30   | 1.7797          | {'precision': 0.02564102564102564, 'recall': 0.0580964153275649, 'f1': 0.03557910673732021, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.0943496801705757, 'recall': 0.16619718309859155, 'f1': 0.120367222033322, 'number': 1065}    | 0.0601            | 0.1124         | 0.0783     | 0.3026           |
| 1.7441        | 4.0   | 40   | 1.7198          | {'precision': 0.019028871391076115, 'recall': 0.03584672435105068, 'f1': 0.024860694384912133, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.12127512127512127, 'recall': 0.1643192488262911, 'f1': 0.13955342902711323, 'number': 1065}  | 0.0686            | 0.1024         | 0.0822     | 0.3324           |
| 1.6818        | 5.0   | 50   | 1.6641          | {'precision': 0.0196078431372549, 'recall': 0.03337453646477132, 'f1': 0.024702653247941447, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.15128593040847202, 'recall': 0.18779342723004694, 'f1': 0.16757436112274823, 'number': 1065} | 0.0841            | 0.1139         | 0.0968     | 0.3537           |
| 1.6335        | 6.0   | 60   | 1.6097          | {'precision': 0.02643171806167401, 'recall': 0.04449938195302843, 'f1': 0.03316444035006909, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.18782870022539444, 'recall': 0.2347417840375587, 'f1': 0.20868113522537562, 'number': 1065}  | 0.1062            | 0.1435         | 0.1221     | 0.3821           |
| 1.5742        | 7.0   | 70   | 1.5578          | {'precision': 0.033409263477600606, 'recall': 0.054388133498145856, 'f1': 0.04139228598306679, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.22088068181818182, 'recall': 0.292018779342723, 'f1': 0.2515163768701982, 'number': 1065}    | 0.1303            | 0.1781         | 0.1505     | 0.4189           |
| 1.5302        | 8.0   | 80   | 1.5083          | {'precision': 0.0456656346749226, 'recall': 0.07292954264524104, 'f1': 0.05616373155640171, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.24610169491525424, 'recall': 0.3408450704225352, 'f1': 0.2858267716535433, 'number': 1065}   | 0.1525            | 0.2117         | 0.1773     | 0.4559           |
| 1.4774        | 9.0   | 90   | 1.4639          | {'precision': 0.05325914149443561, 'recall': 0.08281829419035847, 'f1': 0.0648282535074988, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.28843537414965986, 'recall': 0.39812206572769954, 'f1': 0.33451676528599605, 'number': 1065} | 0.1800            | 0.2464         | 0.2080     | 0.4889           |
| 1.4389        | 10.0  | 100  | 1.4263          | {'precision': 0.059574468085106386, 'recall': 0.0865265760197775, 'f1': 0.07056451612903225, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.32748948106591863, 'recall': 0.4384976525821596, 'f1': 0.3749498193496587, 'number': 1065}   | 0.2065            | 0.2694         | 0.2338     | 0.5120           |
| 1.4007        | 11.0  | 110  | 1.3933          | {'precision': 0.07123534715960325, 'recall': 0.09765142150803462, 'f1': 0.08237747653806049, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.360773085182534, 'recall': 0.4732394366197183, 'f1': 0.40942323314378554, 'number': 1065}    | 0.2326            | 0.2925         | 0.2592     | 0.5334           |
| 1.3866        | 12.0  | 120  | 1.3665          | {'precision': 0.09439252336448598, 'recall': 0.12484548825710753, 'f1': 0.10750399148483236, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.38648052902277735, 'recall': 0.49389671361502346, 'f1': 0.4336356141797197, 'number': 1065}  | 0.2579            | 0.3146         | 0.2835     | 0.5428           |
| 1.3482        | 13.0  | 130  | 1.3469          | {'precision': 0.10622009569377991, 'recall': 0.13720642768850433, 'f1': 0.11974110032362459, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.40044411547002223, 'recall': 0.507981220657277, 'f1': 0.44784768211920534, 'number': 1065}   | 0.2721            | 0.3271         | 0.2971     | 0.5537           |
| 1.3355        | 14.0  | 140  | 1.3345          | {'precision': 0.11078431372549019, 'recall': 0.13967861557478367, 'f1': 0.12356478950246036, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.4114114114114114, 'recall': 0.5145539906103287, 'f1': 0.4572382144347101, 'number': 1065}    | 0.2810            | 0.3317         | 0.3043     | 0.5588           |
| 1.3066        | 15.0  | 150  | 1.3293          | {'precision': 0.11451135241855874, 'recall': 0.1433868974042027, 'f1': 0.12733260153677278, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                     | {'precision': 0.41704374057315236, 'recall': 0.5192488262910798, 'f1': 0.46256796319531585, 'number': 1065}  | 0.2860            | 0.3357         | 0.3089     | 0.5623           |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3