File size: 9,309 Bytes
4eba019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f71d2
 
4eba019
a8f71d2
 
 
 
 
4eba019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f71d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eba019
 
 
 
 
 
a8f71d2
4eba019
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3215
- Answer: {'precision': 0.10096818810511757, 'recall': 0.09023485784919653, 'f1': 0.09530026109660573, 'number': 809}
- Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
- Question: {'precision': 0.3980815347721823, 'recall': 0.4676056338028169, 'f1': 0.43005181347150256, 'number': 1065}
- Overall Precision: 0.2891
- Overall Recall: 0.2865
- Overall F1: 0.2878
- Overall Accuracy: 0.5339

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                        | Header                                                                                                       | Question                                                                                                      | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.9471        | 1.0   | 10   | 1.8844          | {'precision': 0.022006141248720572, 'recall': 0.05315203955500618, 'f1': 0.031125588128845458, 'number': 809} | {'precision': 0.00702576112412178, 'recall': 0.05042016806722689, 'f1': 0.012332990750256937, 'number': 119} | {'precision': 0.054583995760466346, 'recall': 0.09671361502347418, 'f1': 0.06978319783197831, 'number': 1065} | 0.0324            | 0.0763         | 0.0455     | 0.2491           |
| 1.8584        | 2.0   | 20   | 1.8099          | {'precision': 0.018408941485864562, 'recall': 0.034610630407911, 'f1': 0.024034334763948496, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.08241758241758242, 'recall': 0.11267605633802817, 'f1': 0.09520031733439112, 'number': 1065}  | 0.0469            | 0.0743         | 0.0575     | 0.3139           |
| 1.7841        | 3.0   | 30   | 1.7444          | {'precision': 0.02190395956192081, 'recall': 0.032138442521631644, 'f1': 0.026052104208416832, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.10752688172043011, 'recall': 0.12206572769953052, 'f1': 0.11433597185576078, 'number': 1065}  | 0.0645            | 0.0783         | 0.0707     | 0.3426           |
| 1.7255        | 4.0   | 40   | 1.6851          | {'precision': 0.026865671641791045, 'recall': 0.03337453646477132, 'f1': 0.029768467475192944, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.15547024952015356, 'recall': 0.15211267605633802, 'f1': 0.1537731371618415, 'number': 1065}   | 0.0922            | 0.0948         | 0.0935     | 0.3647           |
| 1.6607        | 5.0   | 50   | 1.6287          | {'precision': 0.036458333333333336, 'recall': 0.04326328800988875, 'f1': 0.03957037874505371, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.2018348623853211, 'recall': 0.20657276995305165, 'f1': 0.20417633410672859, 'number': 1065}   | 0.1244            | 0.1279         | 0.1261     | 0.3943           |
| 1.6127        | 6.0   | 60   | 1.5738          | {'precision': 0.045, 'recall': 0.05562422744128554, 'f1': 0.04975124378109452, 'number': 809}                 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.24034334763948498, 'recall': 0.26291079812206575, 'f1': 0.25112107623318386, 'number': 1065}  | 0.1501            | 0.1631         | 0.1563     | 0.4234           |
| 1.5582        | 7.0   | 70   | 1.5242          | {'precision': 0.05465587044534413, 'recall': 0.06674907292954264, 'f1': 0.060100166944908176, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.26282051282051283, 'recall': 0.307981220657277, 'f1': 0.2836143536532642, 'number': 1065}     | 0.1708            | 0.1917         | 0.1807     | 0.4483           |
| 1.5135        | 8.0   | 80   | 1.4789          | {'precision': 0.05976520811099253, 'recall': 0.069221260815822, 'f1': 0.06414662084765177, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.29073482428115016, 'recall': 0.34178403755868547, 'f1': 0.31419939577039274, 'number': 1065}  | 0.1919            | 0.2107         | 0.2009     | 0.4679           |
| 1.4676        | 9.0   | 90   | 1.4380          | {'precision': 0.06818181818181818, 'recall': 0.07416563658838071, 'f1': 0.07104795737122557, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.3149480415667466, 'recall': 0.3699530516431925, 'f1': 0.34024179620034545, 'number': 1065}    | 0.2130            | 0.2278         | 0.2202     | 0.4851           |
| 1.4233        | 10.0  | 100  | 1.4035          | {'precision': 0.07664670658682635, 'recall': 0.07911001236093942, 'f1': 0.0778588807785888, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.3413848631239936, 'recall': 0.39812206572769954, 'f1': 0.3675769397485913, 'number': 1065}    | 0.2350            | 0.2449         | 0.2398     | 0.4988           |
| 1.3864        | 11.0  | 110  | 1.3744          | {'precision': 0.0810126582278481, 'recall': 0.07911001236093942, 'f1': 0.08005003126954345, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.3583535108958838, 'recall': 0.4169014084507042, 'f1': 0.38541666666666663, 'number': 1065}    | 0.2504            | 0.2549         | 0.2526     | 0.5113           |
| 1.3746        | 12.0  | 120  | 1.3519          | {'precision': 0.0870712401055409, 'recall': 0.0815822002472188, 'f1': 0.08423739629865987, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.3806818181818182, 'recall': 0.4403755868544601, 'f1': 0.40835872877666524, 'number': 1065}    | 0.2688            | 0.2684         | 0.2686     | 0.5175           |
| 1.3417        | 13.0  | 130  | 1.3352          | {'precision': 0.09568733153638814, 'recall': 0.08776266996291718, 'f1': 0.09155383623468731, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.39403706688154716, 'recall': 0.4591549295774648, 'f1': 0.4241110147441457, 'number': 1065}    | 0.2824            | 0.2810         | 0.2817     | 0.5272           |
| 1.3318        | 14.0  | 140  | 1.3254          | {'precision': 0.09686221009549795, 'recall': 0.08776266996291718, 'f1': 0.09208819714656291, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.3942307692307692, 'recall': 0.4619718309859155, 'f1': 0.4254215304798963, 'number': 1065}     | 0.2841            | 0.2825         | 0.2833     | 0.5314           |
| 1.3086        | 15.0  | 150  | 1.3215          | {'precision': 0.10096818810511757, 'recall': 0.09023485784919653, 'f1': 0.09530026109660573, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.3980815347721823, 'recall': 0.4676056338028169, 'f1': 0.43005181347150256, 'number': 1065}    | 0.2891            | 0.2865         | 0.2878     | 0.5339           |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3