Ham1mad1's picture
End of training
479a26f verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-Vsl-Lab-PC-V9
    results: []

videomae-base-Vsl-Lab-PC-V9

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3401
  • Accuracy: 0.8112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0001 0.02 81 1.0305 0.8455
0.0001 1.02 162 1.0570 0.8412
0.0 2.02 243 1.0822 0.8369
0.0 3.02 324 1.1003 0.8412
0.0 4.02 405 1.1198 0.8412
0.5974 5.02 486 1.9278 0.6953
0.2193 6.02 567 1.1442 0.7554
0.0261 7.02 648 0.9625 0.8026
0.0859 8.02 729 1.1657 0.8155
0.0044 9.02 810 1.2597 0.8197
0.0007 10.02 891 1.2663 0.8112
0.0001 11.02 972 1.2367 0.8240
0.0002 12.02 1053 1.1224 0.8326
0.0002 13.02 1134 1.1528 0.8326
0.0 14.02 1215 1.1598 0.8326
0.0 15.02 1296 1.1572 0.8369
0.0 16.02 1377 1.1560 0.8369
0.0 17.02 1458 1.1555 0.8369
0.0002 18.02 1539 1.3611 0.8112
0.0 19.02 1620 1.2183 0.8326
0.0 20.02 1701 1.2105 0.8283
0.0 21.02 1782 1.2063 0.8283
0.0 22.02 1863 1.2034 0.8283
0.0 23.02 1944 1.2020 0.8283
0.001 24.02 2025 1.1831 0.8412
0.0687 25.02 2106 1.2683 0.8240
0.0 26.02 2187 1.2521 0.8240
0.0 27.02 2268 1.2430 0.8326
0.0 28.02 2349 1.2394 0.8326
0.0001 29.02 2430 1.2711 0.8283
0.0 30.02 2511 1.2562 0.8283
0.0 31.02 2592 1.2484 0.8326
0.0 32.02 2673 1.2432 0.8326
0.0 33.02 2754 1.2387 0.8326
0.0 34.02 2835 1.2349 0.8326
0.0 35.02 2916 1.2319 0.8326
0.0 36.02 2997 1.2294 0.8326
0.0 37.02 3078 1.2276 0.8326
0.0 38.02 3159 1.2245 0.8326
0.0 39.02 3240 1.2232 0.8326
0.0 40.02 3321 1.2217 0.8326
0.0 41.02 3402 1.2204 0.8326
0.0 42.02 3483 1.3696 0.7983
0.0001 43.02 3564 1.3923 0.7940
0.0 44.02 3645 1.3421 0.8112
0.0 45.02 3726 1.3414 0.8112
0.0 46.02 3807 1.3407 0.8112
0.0 47.02 3888 1.3403 0.8112
0.0 48.02 3969 1.3401 0.8112
0.0 49.01 4000 1.3401 0.8112

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2