File size: 4,288 Bytes
11acb1c
 
 
 
 
 
 
 
c58fabe
bc52b6d
 
c58fabe
bc52b6d
 
 
 
c58fabe
 
bc52b6d
 
 
 
c58fabe
bc52b6d
 
 
 
c58fabe
bc52b6d
 
 
c58fabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322ca32
c58fabe
 
 
322ca32
c58fabe
 
 
322ca32
c58fabe
 
 
 
 
bc52b6d
 
c58fabe
bc52b6d
 
 
c58fabe
bc52b6d
 
 
 
 
c58fabe
bc52b6d
 
 
 
 
 
 
c58fabe
bc52b6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
datasets:
- phiyodr/coco2017
language:
- en
library_name: fastai
pipeline_tag: image-to-image
---
# Model Description
This GAN-based model performs image colorization, transforming grayscale images into color images. It leverages a generator network to predict the color channels and a discriminator network to improve the colorization quality through adversarial training.

# Model Details
Model Name: GAN Colorization Model
Model Architecture: The model uses a ResNet-34 backbone as the encoder in the generator network and a PatchGAN discriminator network.
Framework: PyTorch
Repository: Hammad712/GAN-Colorization-Model
# Model Training
## Dataset
Dataset Used: COCO 2017
Training Size: 8000 images
Validation Size: 2000 images
Image Size: 256x256 pixels
## Training Configuration
Batch Size: 16
Number of Epochs: 5
Optimizer for Generator: Adam (learning rate: 0.0004, betas: 0.5, 0.999)
Optimizer for Discriminator: Adam (learning rate: 0.0004, betas: 0.5, 0.999)
## Loss Functions:
GAN Loss: Binary Cross-Entropy Loss with Logits
L1 Loss: L1 Loss for pixel-wise comparison between generated and real color channels

# Inference Code

from huggingface_hub import hf_hub_download
import torch
from PIL import Image
from torchvision import transforms
from skimage.color import rgb2lab, lab2rgb
import numpy as np
import matplotlib.pyplot as plt

#Download the model from Hugging Face Hub
repo_id = "Hammad712/GAN-Colorization-Model"
model_filename = "generator.pt"
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)

#Define the generator model (same architecture as used during training)
from fastai.vision.learner import create_body
from torchvision.models import resnet34
from fastai.vision.models.unet import DynamicUnet

def build_generator(n_input=1, n_output=2, size=256):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    backbone = create_body(resnet34(), pretrained=True, n_in=n_input, cut=-2)
    G_net = DynamicUnet(backbone, n_output, (size, size)).to(device)
    return G_net

#Initialize and load the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
G_net = build_generator(n_input=1, n_output=2, size=256)
G_net.load_state_dict(torch.load(model_path, map_location=device))
G_net.eval()

#Preprocessing function
def preprocess_image(img_path):
    img = Image.open(img_path).convert("RGB")
    img = transforms.Resize((256, 256), Image.BICUBIC)(img)
    img = np.array(img)
    img_to_lab = rgb2lab(img).astype("float32")
    img_to_lab = transforms.ToTensor()(img_to_lab)
    L = img_to_lab[[0], ...] / 50. - 1.
    return L.unsqueeze(0).to(device)

#Inference function
def colorize_image(img_path, model):
    L = preprocess_image(img_path)
    with torch.no_grad():
        ab = model(L)
    L = (L + 1.) * 50.
    ab = ab * 110.
    Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
    rgb_imgs = []
    for img in Lab:
        img_rgb = lab2rgb(img)
        rgb_imgs.append(img_rgb)
    return np.stack(rgb_imgs, axis=0)

#Example image path

img_path = "/path/to/your/image.jpg"  # Replace with your image path

#Perform inference

colorized_images = colorize_image(img_path, G_net)

#Display the result

plt.imshow(colorized_images[0])
plt.axis("off")
plt.show()

# Usage
To use the model for image colorization, ensure that the dependencies are installed and run the inference code provided. You will need to replace the image path with your own image for colorization.

# Model Performance
Qualitative Results
The model generates visually plausible colorizations for grayscale images. Here are some examples of colorized outputs:

# Limitations
The model may not always produce accurate colors for objects with complex or unusual color distributions.
Performance may degrade for images that significantly differ from the training dataset.
Citation
If you use this model in your research, please cite the original repository:

# bibtex
@misc{Hammad7122023GANColorization,
  title={GAN-Colorization-Model},
  author={Hammad712},
  year={2023},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/Hammad712/GAN-Colorization-Model}},
}
# Contact
For any issues or inquiries, please reach out to the model author through the Hugging Face repository.