SwinLarge / README.md
Hanhpt23's picture
End of training
49a0351 verified
metadata
license: apache-2.0
base_model: microsoft/swin-large-patch4-window12-384-in22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: microsoft/swin-large-patch4-window12-384-in22k
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: NIH-Xray
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.49376114081996436

microsoft/swin-large-patch4-window12-384-in22k

This model is a fine-tuned version of microsoft/swin-large-patch4-window12-384-in22k on the NIH-Xray dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7711
  • Accuracy: 0.4938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8318 0.9984 315 1.7651 0.5437
1.6067 2.0 631 1.6393 0.5455
1.406 2.9984 946 1.6472 0.5490
1.3983 4.0 1262 1.7344 0.5455
0.7272 4.9984 1577 2.1283 0.5258
0.3975 6.0 1893 2.5229 0.5134
0.2648 6.9984 2208 3.0333 0.5080
0.1232 8.0 2524 3.4626 0.5241
0.0873 8.9984 2839 3.6219 0.5027
0.0554 9.9842 3150 3.7711 0.4938

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1