openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the Hanhpt23/GermanMed-full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8154
  • Wer: 28.0469

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.694 1.0 194 0.6826 38.7329
0.3399 2.0 388 0.6960 39.2780
0.1866 3.0 582 0.7193 42.8057
0.1157 4.0 776 0.7415 31.9963
0.0853 5.0 970 0.7792 32.7265
0.0574 6.0 1164 0.7686 33.7036
0.0358 7.0 1358 0.7852 33.1791
0.0423 8.0 1552 0.8025 32.1917
0.027 9.0 1746 0.8138 31.2044
0.0172 10.0 1940 0.8155 29.0548
0.0182 11.0 2134 0.8280 30.7004
0.0053 12.0 2328 0.8268 30.4227
0.0066 13.0 2522 0.8221 30.0319
0.0023 14.0 2716 0.8166 29.5176
0.0007 15.0 2910 0.8215 28.6948
0.0012 16.0 3104 0.8262 28.4789
0.0003 17.0 3298 0.8158 28.3143
0.0004 18.0 3492 0.8154 27.9338
0.0003 19.0 3686 0.8154 27.9646
0.0003 20.0 3880 0.8154 28.0469

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
83
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-Encode-GermanMed-full

Finetuned
(399)
this model