openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the pphuc25/EngMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3225
  • Wer: 27.9808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.7862 1.0 3491 0.8811 43.2441
0.5443 2.0 6982 0.8834 38.7694
0.3319 3.0 10473 0.9247 34.6764
0.2412 4.0 13964 0.9765 34.9636
0.1809 5.0 17455 1.0223 31.3646
0.1112 6.0 20946 1.1013 33.5169
0.0786 7.0 24437 1.1217 34.1563
0.0666 8.0 27928 1.1698 36.5356
0.0487 9.0 31419 1.1934 33.9412
0.0395 10.0 34910 1.2259 31.4509
0.0229 11.0 38401 1.2614 32.0655
0.0181 12.0 41892 1.2823 30.5444
0.0118 13.0 45383 1.2890 30.2773
0.0069 14.0 48874 1.3081 30.3435
0.0073 15.0 52365 1.3085 30.4097
0.0017 16.0 55856 1.3099 29.4145
0.0062 17.0 59347 1.3229 29.5386
0.0013 18.0 62838 1.3162 28.3058
0.0001 19.0 66329 1.3197 28.0387
0.0001 20.0 69820 1.3225 27.9808

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
88
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-Encode-engmed

Finetuned
(399)
this model