openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the Hanhpt23/GermanMed-full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7401
  • Wer: 24.4575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6052 1.0 194 0.5948 34.0636
0.2976 2.0 388 0.5938 29.7336
0.1442 3.0 582 0.6085 34.0327
0.0783 4.0 776 0.6296 26.1339
0.055 5.0 970 0.6500 27.4812
0.0359 6.0 1164 0.6595 28.2012
0.0263 7.0 1358 0.7021 27.1418
0.0218 8.0 1552 0.7004 28.2217
0.0151 9.0 1746 0.7171 28.5303
0.0136 10.0 1940 0.7387 25.8665
0.0108 11.0 2134 0.7312 25.5580
0.0042 12.0 2328 0.7272 26.3910
0.0017 13.0 2522 0.7298 25.3625
0.0028 14.0 2716 0.7286 24.6015
0.0004 15.0 2910 0.7271 24.7557
0.0004 16.0 3104 0.7362 24.6940
0.0004 17.0 3298 0.7358 24.3855
0.0005 18.0 3492 0.7383 24.2723
0.0003 19.0 3686 0.7397 24.4369
0.0003 20.0 3880 0.7401 24.4575

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
124
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-GermanMed-full

Finetuned
(399)
this model