openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the pphuc25/ChiMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2560
  • Wer: 85.6582

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.7187 1.0 161 0.9482 110.4126
0.4241 2.0 322 0.9742 94.1061
0.2284 3.0 483 1.0348 100.9823
0.1019 4.0 644 1.0740 89.9804
0.0663 5.0 805 1.1215 87.4263
0.0473 6.0 966 1.1625 88.4086
0.0354 7.0 1127 1.1645 89.5874
0.0288 8.0 1288 1.1893 105.6974
0.0194 9.0 1449 1.1955 88.0157
0.0144 10.0 1610 1.1969 123.5756
0.011 11.0 1771 1.2305 90.3733
0.005 12.0 1932 1.2550 88.8016
0.0058 13.0 2093 1.2345 87.8193
0.0018 14.0 2254 1.2281 86.8369
0.0006 15.0 2415 1.2489 85.8546
0.0012 16.0 2576 1.2419 86.8369
0.0005 17.0 2737 1.2564 85.6582
0.0004 18.0 2898 1.2542 85.6582
0.0004 19.0 3059 1.2548 85.8546
0.0004 20.0 3220 1.2560 85.6582

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
100
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-chinesemed-full

Finetuned
(399)
this model