openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the Hanhpt23/ChineseMed dataset. It achieves the following results on the evaluation set:

  • Loss: 5.0851
  • Wer: 123.8122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
2.9911 1.0 2222 2.9811 126.1019
2.4471 2.0 4444 2.9707 127.8764
1.8547 3.0 6666 3.2495 108.1282
1.2595 4.0 8888 3.5609 127.3039
0.9103 5.0 11110 3.9172 114.0813
0.593 6.0 13332 4.2574 108.8151
0.4738 7.0 15554 4.4006 108.0137
0.3788 8.0 17776 4.5577 136.2335
0.3916 9.0 19998 4.6187 128.9067
0.3148 10.0 22220 4.7217 121.5799
0.3413 11.0 24442 4.8141 122.3812
0.2903 12.0 26664 4.8305 117.5157
0.3044 13.0 28886 4.8859 129.0212
0.2648 14.0 31108 4.9314 111.5054
0.3343 15.0 33330 4.9714 111.4482
0.2693 16.0 35552 5.0438 109.9599
0.2677 17.0 37774 5.0470 108.0710
0.2834 18.0 39996 5.0293 120.2633
0.2198 19.0 42218 5.0545 123.6978
0.2242 20.0 44440 5.0851 123.8122

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-chinesemed-v1

Finetuned
(392)
this model