openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the pphuc25/EngMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2118
  • Wer: 21.1498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.5428 1.0 323 0.6628 36.9726
0.3049 2.0 646 0.7340 25.6329
0.1478 3.0 969 0.8008 32.5422
0.0905 4.0 1292 0.8517 21.2553
0.0556 5.0 1615 0.9244 26.4241
0.0474 6.0 1938 0.9692 25.3692
0.0338 7.0 2261 1.0099 25.7384
0.0196 8.0 2584 1.0844 27.6371
0.0152 9.0 2907 1.1063 22.7848
0.0062 10.0 3230 1.1242 22.6793
0.0064 11.0 3553 1.1909 26.1076
0.0046 12.0 3876 1.1556 21.7300
0.0021 13.0 4199 1.1804 20.8861
0.0023 14.0 4522 1.1757 21.2553
0.0003 15.0 4845 1.2014 22.9430
0.0003 16.0 5168 1.1849 21.7300
0.0004 17.0 5491 1.1936 21.6245
0.0002 18.0 5814 1.2106 20.9916
0.0002 19.0 6137 1.2111 20.9388
0.0001 20.0 6460 1.2118 21.1498

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-engmed-v1

Finetuned
(392)
this model