openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the pphuc25/EngMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4040
  • Wer: 24.2615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.7995 1.0 2268 0.8023 42.7597
0.4972 2.0 4536 0.8141 31.7847
0.3198 3.0 6804 0.8778 34.2508
0.2148 4.0 9072 0.9436 32.1119
0.1419 5.0 11340 1.0230 29.0506
0.0918 6.0 13608 1.0874 27.6792
0.0747 7.0 15876 1.1259 28.6260
0.0515 8.0 18144 1.1792 28.2198
0.0271 9.0 20412 1.2107 26.5981
0.0248 10.0 22680 1.2557 25.6329
0.0234 11.0 24948 1.2852 25.0377
0.0123 12.0 27216 1.2924 25.9923
0.0078 13.0 29484 1.3419 26.1364
0.0066 14.0 31752 1.3504 25.6874
0.003 15.0 34020 1.3602 23.9576
0.0028 16.0 36288 1.3710 24.7884
0.0045 17.0 38556 1.3845 24.4455
0.0003 18.0 40824 1.3914 25.2929
0.0002 19.0 43092 1.3993 24.3930
0.0001 20.0 45360 1.4040 24.2615

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
88
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-engmed-v2

Finetuned
(399)
this model