Multi-ling-BERT
This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset.
Usage
In Transformers
from transformers import pipeline,AutoTokenizer
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "I feel happy today!"
inputs = tokenizer(text,return_tensors="pt",padding=True, truncation=True)
{
'input_ids': tensor([[ 101, 1045, 2514, 3407, 2651, 999, 102]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])
}
tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
['[CLS]', 'i', 'feel', 'happy', 'today', '!', '[SEP]']
tokenizer.decode(inputs["input_ids"][0])
[CLS] i feel happy today! [SEP]
text = "This is the question"
query = "This is the context with lots of information. Some useless. The answer is here some more words."
inputs = tokenizer(text,query,return_tensors="pt",padding=True, truncation=True)
{
'input_ids': tensor([ 101, 2023, 2003, 1996, 3160, 102, 2023, 2003, 1996, 6123,
2007, 7167, 1997, 2592, 1012, 2070, 11809, 1012, 1996, 3437,
2003, 2182, 2070, 2062, 2616, 1012, 102])
}
tokenizer.decode(inputs ["input_ids"][0])
text = "I feel happy today!"
# BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained(model_name)
inputs_for_BertTokenizer = tokenizer(text, return_tensors="pt",padding=False, truncation=True, max_length=512, stride=256)
{
'input_ids': tensor([[ 101, 100, 11297, 9200, 11262, 106, 102]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])
}
# BartTokenizerFast
tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base")
inputs_for_BartTokenizerFast= tokenizer(text, return_tensors="pt",padding=False, truncation=True, max_length=512, stride=256)
{
'input_ids': tensor([[ 0, 100, 619, 1372, 452, 328, 2]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])
}
# Model
from transformers import AutoModel
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModel.from_pretrained(model_name)
outputs = model(**inputs)
print(outputs.last_hidden_state.shape)
{
torch.Size([1, 7, 768])
}
from transformers import AutoModelForSequenceClassification
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
outputs = model(**inputs)
print(outputs.logits)
{
tensor([[-4.3450, 4.6878]], grad_fn=<AddmmBackward0>)
}
import torch
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
print(predictions)
{
tensor([[1.1942e-04, 9.9988e-01]], grad_fn=<SoftmaxBackward0>)
}
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.