AfriSenti Igbo Sentiment Regressor Description
Takes a text and predicts the sentiment value between -1 (Negative) to 1 (Positive) with 0 being Neutral.
Regression Value Description:
Value | Sentiment |
---|---|
-1 | Negative |
0 | Neutral |
1 | Positive |
How to Get Started with the Model
Use the code below to get started with the model.
import math
import torch
import pandas as pd
from transformers import AutoModelForSequenceClassification, AutoTokenizer
BATCH_SIZE = 32
ds = pd.read_csv('test.csv')
BASE_MODEL = 'HausaNLP/afrisenti-ibo-regression'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL)
nb_batches = math.ceil(len(ds)/BATCH_SIZE)
y_preds = []
for i in range(nb_batches):
input_texts = ds[i * BATCH_SIZE: (i+1) * BATCH_SIZE]["tweet"]
encoded = tokenizer(input_texts, truncation=True, padding="max_length", max_length=256, return_tensors="pt").to(device)
y_preds += model(**encoded).logits.reshape(-1).tolist()
df = pd.DataFrame([ds['tweet'], ds['label'], y_preds], ["Text", "Label", "Prediction"]).T
df.to_csv('predictions.csv', index=False)
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.