HelinXu's picture
Upload 5 files
1ec3da2
data_root = '/root/autodl-tmp/ui_dataset'
import logging
import os
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel
import random
import cv2
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import (
datasets,
MetadataCatalog,
get_detection_dataset_dicts,
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.engine import default_argument_parser, default_setup, default_writers, launch
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
LVISEvaluator,
PascalVOCDetectionEvaluator,
SemSegEvaluator,
inference_on_dataset,
print_csv_format,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import EventStorage
from icecream import ic, install
install()
ic.configureOutput(includeContext=True, contextAbsPath=True)
logger = logging.getLogger("detectron2")
def visualize(dataset_name='valid_ui', num=4, iter=0):
if not os.path.exists('./imgs'):
os.mkdir('./imgs')
metadata = MetadataCatalog.get(dataset_name)
dataset = get_detection_dataset_dicts(dataset_name)
for i, d in enumerate(random.sample(dataset, num)):
img = cv2.imread(d["file_name"])
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, scale=0.5)
vis = visualizer.draw_dataset_dict(d)
cv2.imwrite(f'./imgs/{iter}_{dataset_name}_{i}.png', vis.get_image()[:, :, ::-1])
def get_evaluator(cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
if evaluator_type in ["coco", "coco_panoptic_seg"]:
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "coco_panoptic_seg":
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
if evaluator_type == "cityscapes_instance":
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
return CityscapesSemSegEvaluator(dataset_name)
if evaluator_type == "pascal_voc":
return PascalVOCDetectionEvaluator(dataset_name)
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, cfg, True, output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type)
)
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
def do_test(cfg, model, storage=None):
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
data_loader = build_detection_test_loader(cfg, dataset_name)
evaluator = get_evaluator(
cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
)
results_i = inference_on_dataset(model, data_loader, evaluator)
results[dataset_name] = results_i
if comm.is_main_process():
logger.info("Evaluation results for {} in csv format:".format(dataset_name))
print_csv_format(results_i)
# dump to storage, save to tensorboard
if storage != None:
for key, value in results_i.items(): # key = bbox / segm; value = {'AP': xx, 'APm': xx, ...}
logging.info(f'key value: {key}, {value}')
logging.info(f'key: {key}')
out_aps_dict = {}
for k, v in value.items():
k = dataset_name + '_' + k
out_aps_dict[k] = v
# print('**{k: v.item() for k, v in comm.reduce_dict(results_i).items()}\n', type(**{k: v.item() for k, v in comm.reduce_dict(results_i).items()}))
storage.put_scalars(**out_aps_dict)
if len(results) == 1:
results = list(results.values())[0]
return results
def do_train(cfg, model, resume=False):
model.train()
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = (
checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
)
max_iter = cfg.SOLVER.MAX_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else []
# compared to "train_net.py", we do not support accurate timing and
# precise BN here, because they are not trivial to implement in a small training loop
data_loader = build_detection_train_loader(cfg)
logger.info("Starting training from iteration {}".format(start_iter))
with EventStorage(start_iter) as storage:
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
storage.iter = iteration
loss_dict = model(data)
losses = sum(loss_dict.values())
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
if comm.is_main_process():
storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
scheduler.step()
if (
cfg.TEST.EVAL_PERIOD > 0
and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter - 1
):
visualize('valid_ui', 5, iteration)
visualize('train_ui', 5, iteration)
do_test(cfg, model, storage)
# Compared to "train_net.py", the test results are not dumped to EventStorage
comm.synchronize()
if iteration - start_iter > 5 and (
(iteration + 1) % 20 == 0 or iteration == max_iter - 1
):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(
cfg, args
) # if you don't like any of the default setup, write your own setup code
return cfg
def main(args):
cfg = setup(args)
datasets.register_coco_instances("train_ui", {},
f"{data_root}/train/_annotations.coco.json",
f"{data_root}/train")
datasets.register_coco_instances("train_dora_ui", {},
f"{data_root.replace('ui_dataset', 'dora_dataset')}/train.json",
f"{data_root.replace('ui_dataset', 'dora_dataset')}/train")
datasets.register_coco_instances("test_ui", {},
f"{data_root}/test/_annotations.coco.json",
f"{data_root}/test")
datasets.register_coco_instances("valid_ui", {},
f"{data_root}/valid/_annotations.coco.json",
f"{data_root}/valid")
datasets.register_coco_instances("valid_dora_ui", {},
f"{data_root.replace('ui_dataset', 'dora_dataset')}/val.json",
f"{data_root.replace('ui_dataset', 'dora_dataset')}/train")
print('done registering datasets')
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
)
do_train(cfg, model, resume=args.resume)
return do_test(cfg, model)
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)