File size: 17,263 Bytes
98b60ee
 
20c3d21
 
 
 
98b60ee
20c3d21
 
 
 
 
 
 
8b5803e
 
98b60ee
 
d688a46
8c54fda
 
 
1afad65
20c3d21
8b5803e
20c3d21
eac2dd1
4f62b61
 
20c3d21
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
1afad65
20c3d21
8b5803e
20c3d21
eac2dd1
 
4f62b61
20c3d21
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
1afad65
20c3d21
8b5803e
20c3d21
eac2dd1
 
4f62b61
20c3d21
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
1afad65
20c3d21
8b5803e
20c3d21
eac2dd1
 
4f62b61
20c3d21
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
1afad65
20c3d21
8b5803e
20c3d21
eac2dd1
 
4f62b61
20c3d21
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
1afad65
20c3d21
8b5803e
20c3d21
eac2dd1
37ad177
4f62b61
20c3d21
8b5803e
d688a46
8b5803e
1afad65
8c54fda
8b5803e
8c54fda
4f62b61
 
 
20c3d21
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
37ad177
 
8b5803e
37ad177
eac2dd1
 
4f62b61
37ad177
8b5803e
d688a46
8b5803e
 
d688a46
8b5803e
98b60ee
 
 
6e11a5f
98b60ee
6e11a5f
98b60ee
8b5803e
98b60ee
20c3d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b60ee
 
 
 
 
 
6e11a5f
 
98b60ee
 
20c3d21
 
98b60ee
 
 
 
 
20c3d21
 
 
 
 
 
 
 
 
 
4f62b61
20c3d21
 
 
 
 
 
 
 
 
 
 
 
 
98b60ee
 
 
 
20c3d21
 
 
98b60ee
 
 
 
6e11a5f
 
4f62b61
20c3d21
6e11a5f
20c3d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b60ee
6e11a5f
 
8b5803e
98b60ee
 
 
 
4f62b61
 
98b60ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
---
language:
- af
- de
- en
- fy
- gmw
- gos
- hrx
- lb
- nds
- nl
- pdc
- yi
- multilingual
license: cc-by-4.0
tags:
- translation
- opus-mt-tc
model-index:
- name: opus-mt-tc-base-gmw-gmw
  results:
  - task:
      type: translation
      name: Translation afr-deu
    dataset:
      name: flores101-devtest
      type: flores_101
      args: afr deu devtest
    metrics:
    - type: bleu
      value: 21.6
      name: BLEU
    - type: bleu
      value: 46.8
      name: BLEU
    - type: bleu
      value: 21.4
      name: BLEU
    - type: bleu
      value: 33.8
      name: BLEU
    - type: bleu
      value: 33.8
      name: BLEU
    - type: bleu
      value: 29.1
      name: BLEU
    - type: bleu
      value: 21.0
      name: BLEU
    - type: bleu
      value: 25.6
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: multi30k_test_2016_flickr
      type: multi30k-2016_flickr
      args: deu-eng
    metrics:
    - type: bleu
      value: 32.2
      name: BLEU
    - type: bleu
      value: 28.8
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: multi30k_test_2017_flickr
      type: multi30k-2017_flickr
      args: deu-eng
    metrics:
    - type: bleu
      value: 32.7
      name: BLEU
    - type: bleu
      value: 27.6
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: multi30k_test_2017_mscoco
      type: multi30k-2017_mscoco
      args: deu-eng
    metrics:
    - type: bleu
      value: 25.5
      name: BLEU
    - type: bleu
      value: 22.0
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: multi30k_test_2018_flickr
      type: multi30k-2018_flickr
      args: deu-eng
    metrics:
    - type: bleu
      value: 30.0
      name: BLEU
    - type: bleu
      value: 25.3
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: news-test2008
      type: news-test2008
      args: deu-eng
    metrics:
    - type: bleu
      value: 23.8
      name: BLEU
  - task:
      type: translation
      name: Translation afr-deu
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: afr-deu
    metrics:
    - type: bleu
      value: 48.1
      name: BLEU
    - type: bleu
      value: 58.8
      name: BLEU
    - type: bleu
      value: 54.5
      name: BLEU
    - type: bleu
      value: 52.4
      name: BLEU
    - type: bleu
      value: 42.1
      name: BLEU
    - type: bleu
      value: 48.7
      name: BLEU
    - type: bleu
      value: 56.5
      name: BLEU
    - type: bleu
      value: 35.9
      name: BLEU
    - type: bleu
      value: 48.3
      name: BLEU
    - type: bleu
      value: 32.5
      name: BLEU
    - type: bleu
      value: 43.1
      name: BLEU
    - type: bleu
      value: 24.7
      name: BLEU
    - type: bleu
      value: 20.4
      name: BLEU
    - type: bleu
      value: 37.2
      name: BLEU
    - type: bleu
      value: 32.4
      name: BLEU
    - type: bleu
      value: 39.3
      name: BLEU
    - type: bleu
      value: 34.5
      name: BLEU
    - type: bleu
      value: 29.9
      name: BLEU
    - type: bleu
      value: 42.3
      name: BLEU
    - type: bleu
      value: 58.8
      name: BLEU
    - type: bleu
      value: 50.4
      name: BLEU
    - type: bleu
      value: 53.1
      name: BLEU
    - type: bleu
      value: 25.1
      name: BLEU
    - type: bleu
      value: 21.4
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2009
      type: wmt-2009-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 23.4
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2010
      type: wmt-2010-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 25.8
      name: BLEU
    - type: bleu
      value: 20.7
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2011
      type: wmt-2011-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 23.7
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2012
      type: wmt-2012-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 24.8
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2013
      type: wmt-2013-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 27.7
      name: BLEU
    - type: bleu
      value: 22.5
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2014-deen
      type: wmt-2014-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 27.3
      name: BLEU
    - type: bleu
      value: 22.0
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2015-deen
      type: wmt-2015-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 28.6
      name: BLEU
    - type: bleu
      value: 25.7
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2016-deen
      type: wmt-2016-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 33.3
      name: BLEU
    - type: bleu
      value: 30.0
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2017-deen
      type: wmt-2017-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 29.5
      name: BLEU
    - type: bleu
      value: 24.1
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2018-deen
      type: wmt-2018-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 36.1
      name: BLEU
    - type: bleu
      value: 35.4
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2019-deen
      type: wmt-2019-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 32.3
      name: BLEU
    - type: bleu
      value: 31.2
      name: BLEU
  - task:
      type: translation
      name: Translation deu-eng
    dataset:
      name: newstest2020-deen
      type: wmt-2020-news
      args: deu-eng
    metrics:
    - type: bleu
      value: 32.0
      name: BLEU
    - type: bleu
      value: 23.9
      name: BLEU
---
# opus-mt-tc-base-gmw-gmw

Neural machine translation model for translating from West Germanic languages (gmw) to West Germanic languages (gmw).

This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).

* Publications: [OPUS-MT � Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge � Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)

```
@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}
```

## Model info

* Release: 2021-02-23
* source language(s): afr deu eng fry gos hrx ltz nds nld pdc yid
* target language(s): afr deu eng fry nds nld
* valid target language labels: >>afr<< >>ang_Latn<< >>deu<< >>eng<< >>fry<< >>ltz<< >>nds<< >>nld<< >>sco<< >>yid<<
* model: transformer (base)
* data: opus ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opus-2021-02-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.zip)
* more information released models: [OPUS-MT gmw-gmw README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-gmw/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>afr<<`

## Usage

A short example code:

```python
from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>nld<< You need help.",
    ">>afr<< I love your son."
]

model_name = "pytorch-models/opus-mt-tc-base-gmw-gmw"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Je hebt hulp nodig.
#     Ek is lief vir jou seun.
```

You can also use OPUS-MT models with the transformers pipelines, for example:

```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-gmw-gmw")
print(pipe(>>nld<< You need help.))

# expected output: Je hebt hulp nodig.
```

## Benchmarks

* test set translations: [opus-2021-02-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.test.txt)
* test set scores: [opus-2021-02-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)

| langpair | testset | chr-F | BLEU  | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| afr-deu | tatoeba-test-v2021-08-07 | 0.674 | 48.1 | 1583 | 9105 |
| afr-eng | tatoeba-test-v2021-08-07 | 0.728 | 58.8 | 1374 | 9622 |
| afr-nld | tatoeba-test-v2021-08-07 | 0.711 | 54.5 | 1056 | 6710 |
| deu-afr | tatoeba-test-v2021-08-07 | 0.696 | 52.4 | 1583 | 9507 |
| deu-eng | tatoeba-test-v2021-08-07 | 0.609 | 42.1 | 17565 | 149462 |
| deu-nds | tatoeba-test-v2021-08-07 | 0.442 | 18.6 | 9999 | 76137 |
| deu-nld | tatoeba-test-v2021-08-07 | 0.672 | 48.7 | 10218 | 75235 |
| eng-afr | tatoeba-test-v2021-08-07 | 0.735 | 56.5 | 1374 | 10317 |
| eng-deu | tatoeba-test-v2021-08-07 | 0.580 | 35.9 | 17565 | 151568 |
| eng-nds | tatoeba-test-v2021-08-07 | 0.412 | 16.6 | 2500 | 18264 |
| eng-nld | tatoeba-test-v2021-08-07 | 0.663 | 48.3 | 12696 | 91796 |
| fry-eng | tatoeba-test-v2021-08-07 | 0.500 | 32.5 | 220 | 1573 |
| fry-nld | tatoeba-test-v2021-08-07 | 0.633 | 43.1 | 260 | 1854 |
| gos-nld | tatoeba-test-v2021-08-07 | 0.405 | 15.6 | 1852 | 9903 |
| hrx-deu | tatoeba-test-v2021-08-07 | 0.484 | 24.7 | 471 | 2805 |
| hrx-eng | tatoeba-test-v2021-08-07 | 0.362 | 20.4 | 221 | 1235 |
| ltz-deu | tatoeba-test-v2021-08-07 | 0.556 | 37.2 | 347 | 2208 |
| ltz-eng | tatoeba-test-v2021-08-07 | 0.485 | 32.4 | 293 | 1840 |
| ltz-nld | tatoeba-test-v2021-08-07 | 0.534 | 39.3 | 292 | 1685 |
| nds-deu | tatoeba-test-v2021-08-07 | 0.572 | 34.5 | 9999 | 74564 |
| nds-eng | tatoeba-test-v2021-08-07 | 0.493 | 29.9 | 2500 | 17589 |
| nds-nld | tatoeba-test-v2021-08-07 | 0.621 | 42.3 | 1657 | 11490 |
| nld-afr | tatoeba-test-v2021-08-07 | 0.755 | 58.8 | 1056 | 6823 |
| nld-deu | tatoeba-test-v2021-08-07 | 0.686 | 50.4 | 10218 | 74131 |
| nld-eng | tatoeba-test-v2021-08-07 | 0.690 | 53.1 | 12696 | 89978 |
| nld-fry | tatoeba-test-v2021-08-07 | 0.478 | 25.1 | 260 | 1857 |
| nld-nds | tatoeba-test-v2021-08-07 | 0.462 | 21.4 | 1657 | 11711 |
| afr-deu | flores101-devtest | 0.524 | 21.6 | 1012 | 25094 |
| afr-eng | flores101-devtest | 0.693 | 46.8 | 1012 | 24721 |
| afr-nld | flores101-devtest | 0.509 | 18.4 | 1012 | 25467 |
| deu-afr | flores101-devtest | 0.534 | 21.4 | 1012 | 25740 |
| deu-eng | flores101-devtest | 0.616 | 33.8 | 1012 | 24721 |
| deu-nld | flores101-devtest | 0.516 | 19.2 | 1012 | 25467 |
| eng-afr | flores101-devtest | 0.628 | 33.8 | 1012 | 25740 |
| eng-deu | flores101-devtest | 0.581 | 29.1 | 1012 | 25094 |
| eng-nld | flores101-devtest | 0.533 | 21.0 | 1012 | 25467 |
| ltz-afr | flores101-devtest | 0.430 | 12.9 | 1012 | 25740 |
| ltz-deu | flores101-devtest | 0.482 | 17.1 | 1012 | 25094 |
| ltz-eng | flores101-devtest | 0.468 | 18.8 | 1012 | 24721 |
| ltz-nld | flores101-devtest | 0.409 | 10.7 | 1012 | 25467 |
| nld-afr | flores101-devtest | 0.494 | 16.8 | 1012 | 25740 |
| nld-deu | flores101-devtest | 0.501 | 17.9 | 1012 | 25094 |
| nld-eng | flores101-devtest | 0.551 | 25.6 | 1012 | 24721 |
| deu-eng | multi30k_test_2016_flickr | 0.546 | 32.2 | 1000 | 12955 |
| eng-deu | multi30k_test_2016_flickr | 0.582 | 28.8 | 1000 | 12106 |
| deu-eng | multi30k_test_2017_flickr | 0.561 | 32.7 | 1000 | 11374 |
| eng-deu | multi30k_test_2017_flickr | 0.573 | 27.6 | 1000 | 10755 |
| deu-eng | multi30k_test_2017_mscoco | 0.499 | 25.5 | 461 | 5231 |
| eng-deu | multi30k_test_2017_mscoco | 0.514 | 22.0 | 461 | 5158 |
| deu-eng | multi30k_test_2018_flickr | 0.535 | 30.0 | 1071 | 14689 |
| eng-deu | multi30k_test_2018_flickr | 0.547 | 25.3 | 1071 | 13703 |
| deu-eng | newssyscomb2009 | 0.527 | 25.4 | 502 | 11818 |
| eng-deu | newssyscomb2009 | 0.504 | 19.3 | 502 | 11271 |
| deu-eng | news-test2008 | 0.518 | 23.8 | 2051 | 49380 |
| eng-deu | news-test2008 | 0.492 | 19.3 | 2051 | 47447 |
| deu-eng | newstest2009 | 0.516 | 23.4 | 2525 | 65399 |
| eng-deu | newstest2009 | 0.498 | 18.8 | 2525 | 62816 |
| deu-eng | newstest2010 | 0.546 | 25.8 | 2489 | 61711 |
| eng-deu | newstest2010 | 0.508 | 20.7 | 2489 | 61503 |
| deu-eng | newstest2011 | 0.524 | 23.7 | 3003 | 74681 |
| eng-deu | newstest2011 | 0.493 | 19.2 | 3003 | 72981 |
| deu-eng | newstest2012 | 0.532 | 24.8 | 3003 | 72812 |
| eng-deu | newstest2012 | 0.493 | 19.5 | 3003 | 72886 |
| deu-eng | newstest2013 | 0.548 | 27.7 | 3000 | 64505 |
| eng-deu | newstest2013 | 0.517 | 22.5 | 3000 | 63737 |
| deu-eng | newstest2014-deen | 0.548 | 27.3 | 3003 | 67337 |
| eng-deu | newstest2014-deen | 0.532 | 22.0 | 3003 | 62688 |
| deu-eng | newstest2015-deen | 0.553 | 28.6 | 2169 | 46443 |
| eng-deu | newstest2015-ende | 0.544 | 25.7 | 2169 | 44260 |
| deu-eng | newstest2016-deen | 0.596 | 33.3 | 2999 | 64119 |
| eng-deu | newstest2016-ende | 0.580 | 30.0 | 2999 | 62669 |
| deu-eng | newstest2017-deen | 0.561 | 29.5 | 3004 | 64399 |
| eng-deu | newstest2017-ende | 0.535 | 24.1 | 3004 | 61287 |
| deu-eng | newstest2018-deen | 0.610 | 36.1 | 2998 | 67012 |
| eng-deu | newstest2018-ende | 0.613 | 35.4 | 2998 | 64276 |
| deu-eng | newstest2019-deen | 0.582 | 32.3 | 2000 | 39227 |
| eng-deu | newstest2019-ende | 0.583 | 31.2 | 1997 | 48746 |
| deu-eng | newstest2020-deen | 0.604 | 32.0 | 785 | 38220 |
| eng-deu | newstest2020-ende | 0.542 | 23.9 | 1418 | 52383 |
| deu-eng | newstestB2020-deen | 0.598 | 31.2 | 785 | 37696 |
| eng-deu | newstestB2020-ende | 0.532 | 23.3 | 1418 | 53092 |

## Acknowledgements

The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union�s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union�s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.

## Model conversion info

* transformers version: 4.12.3
* OPUS-MT git hash: e56a06b
* port time: Sun Feb 13 14:42:10 EET 2022
* port machine: LM0-400-22516.local