patrickvonplaten's picture
Add `opus-mt-tc` tag (#1)
0850dc8
---
language:
- ces
- slk
- cs
- sk
- en
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-ces_slk
results:
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: flores101-devtest
type: flores_101
args: eng ces devtest
metrics:
- name: BLEU
type: bleu
value: 34.1
- task:
name: Translation eng-slk
type: translation
args: eng-slk
dataset:
name: flores101-devtest
type: flores_101
args: eng slk devtest
metrics:
- name: BLEU
type: bleu
value: 35.9
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 33.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 33.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: news-test2008
type: news-test2008
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 22.8
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 47.5
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2009
type: wmt-2009-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.3
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2010
type: wmt-2010-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2011
type: wmt-2011-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 25.5
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2012
type: wmt-2012-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 22.6
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2013
type: wmt-2013-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 27.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2014
type: wmt-2014-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 31.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2015
type: wmt-2015-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 27.0
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2016
type: wmt-2016-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 29.9
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2017
type: wmt-2017-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.9
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2018
type: wmt-2018-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.6
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2019
type: wmt-2019-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 26.4
---
# opus-mt-tc-big-en-ces_slk
Neural machine translation model for translating from English (en) to Czech and Slovak (ces+slk).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): eng
* target language(s): ces
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ces+slk/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT eng-ces+slk README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-ces+slk/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>ces<< We were enemies.",
">>ces<< Do you think Tom knows what's going on?"
]
model_name = "pytorch-models/opus-mt-tc-big-en-ces_slk"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Byli jsme nepřátelé.
# Myslíš, že Tom ví, co se děje?
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ces_slk")
print(pipe(">>ces<< We were enemies."))
# expected output: Byli jsme nepřátelé.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ces+slk/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ces+slk/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-ces | tatoeba-test-v2021-08-07 | 0.66128 | 47.5 | 13824 | 91332 |
| eng-ces | flores101-devtest | 0.60411 | 34.1 | 1012 | 22101 |
| eng-slk | flores101-devtest | 0.62415 | 35.9 | 1012 | 22543 |
| eng-ces | multi30k_test_2016_flickr | 0.58547 | 33.4 | 1000 | 10503 |
| eng-ces | multi30k_test_2018_flickr | 0.59236 | 33.4 | 1071 | 11631 |
| eng-ces | newssyscomb2009 | 0.52702 | 25.3 | 502 | 10032 |
| eng-ces | news-test2008 | 0.50286 | 22.8 | 2051 | 42484 |
| eng-ces | newstest2009 | 0.52152 | 24.3 | 2525 | 55533 |
| eng-ces | newstest2010 | 0.52527 | 24.4 | 2489 | 52955 |
| eng-ces | newstest2011 | 0.52721 | 25.5 | 3003 | 65653 |
| eng-ces | newstest2012 | 0.50007 | 22.6 | 3003 | 65456 |
| eng-ces | newstest2013 | 0.53643 | 27.4 | 3000 | 57250 |
| eng-ces | newstest2014 | 0.58944 | 31.4 | 3003 | 59902 |
| eng-ces | newstest2015 | 0.55094 | 27.0 | 2656 | 45858 |
| eng-ces | newstest2016 | 0.56864 | 29.9 | 2999 | 56998 |
| eng-ces | newstest2017 | 0.52504 | 24.9 | 3005 | 54361 |
| eng-ces | newstest2018 | 0.52490 | 24.6 | 2983 | 54652 |
| eng-ces | newstest2019 | 0.53994 | 26.4 | 1997 | 43113 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 16:46:48 EEST 2022
* port machine: LM0-400-22516.local