tiedeman's picture
use bcp47
24740d7
|
raw
history blame
21.1 kB
---
language_bcp47:
- bg
- bs_Latn
- es
- fr
- hr
- it
- itc
- mk
- pt
- sh
- sl
- sr_Cyrl
- sr_Latn
- zls
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-zls-itc
results:
- task:
name: Translation bul-fra
type: translation
args: bul-fra
dataset:
name: flores101-devtest
type: flores_101
args: bul fra devtest
metrics:
- name: BLEU
type: bleu
value: 34.4
- name: chr-F
type: chrf
value: 0.60640
- task:
name: Translation bul-ita
type: translation
args: bul-ita
dataset:
name: flores101-devtest
type: flores_101
args: bul ita devtest
metrics:
- name: BLEU
type: bleu
value: 24.0
- name: chr-F
type: chrf
value: 0.54135
- task:
name: Translation bul-por
type: translation
args: bul-por
dataset:
name: flores101-devtest
type: flores_101
args: bul por devtest
metrics:
- name: BLEU
type: bleu
value: 32.4
- name: chr-F
type: chrf
value: 0.59322
- task:
name: Translation bul-ron
type: translation
args: bul-ron
dataset:
name: flores101-devtest
type: flores_101
args: bul ron devtest
metrics:
- name: BLEU
type: bleu
value: 27.1
- name: chr-F
type: chrf
value: 0.55558
- task:
name: Translation bul-spa
type: translation
args: bul-spa
dataset:
name: flores101-devtest
type: flores_101
args: bul spa devtest
metrics:
- name: BLEU
type: bleu
value: 22.4
- name: chr-F
type: chrf
value: 0.50962
- task:
name: Translation hrv-fra
type: translation
args: hrv-fra
dataset:
name: flores101-devtest
type: flores_101
args: hrv fra devtest
metrics:
- name: BLEU
type: bleu
value: 33.1
- name: chr-F
type: chrf
value: 0.59349
- task:
name: Translation hrv-ita
type: translation
args: hrv-ita
dataset:
name: flores101-devtest
type: flores_101
args: hrv ita devtest
metrics:
- name: BLEU
type: bleu
value: 23.5
- name: chr-F
type: chrf
value: 0.52980
- task:
name: Translation hrv-por
type: translation
args: hrv-por
dataset:
name: flores101-devtest
type: flores_101
args: hrv por devtest
metrics:
- name: BLEU
type: bleu
value: 30.2
- name: chr-F
type: chrf
value: 0.57402
- task:
name: Translation hrv-ron
type: translation
args: hrv-ron
dataset:
name: flores101-devtest
type: flores_101
args: hrv ron devtest
metrics:
- name: BLEU
type: bleu
value: 25.9
- name: chr-F
type: chrf
value: 0.53650
- task:
name: Translation hrv-spa
type: translation
args: hrv-spa
dataset:
name: flores101-devtest
type: flores_101
args: hrv spa devtest
metrics:
- name: BLEU
type: bleu
value: 21.5
- name: chr-F
type: chrf
value: 0.50161
- task:
name: Translation mkd-fra
type: translation
args: mkd-fra
dataset:
name: flores101-devtest
type: flores_101
args: mkd fra devtest
metrics:
- name: BLEU
type: bleu
value: 35.2
- name: chr-F
type: chrf
value: 0.60801
- task:
name: Translation mkd-ita
type: translation
args: mkd-ita
dataset:
name: flores101-devtest
type: flores_101
args: mkd ita devtest
metrics:
- name: BLEU
type: bleu
value: 23.9
- name: chr-F
type: chrf
value: 0.53543
- task:
name: Translation mkd-por
type: translation
args: mkd-por
dataset:
name: flores101-devtest
type: flores_101
args: mkd por devtest
metrics:
- name: BLEU
type: bleu
value: 33.9
- name: chr-F
type: chrf
value: 0.59648
- task:
name: Translation mkd-ron
type: translation
args: mkd-ron
dataset:
name: flores101-devtest
type: flores_101
args: mkd ron devtest
metrics:
- name: BLEU
type: bleu
value: 28.0
- name: chr-F
type: chrf
value: 0.54998
- task:
name: Translation mkd-spa
type: translation
args: mkd-spa
dataset:
name: flores101-devtest
type: flores_101
args: mkd spa devtest
metrics:
- name: BLEU
type: bleu
value: 22.8
- name: chr-F
type: chrf
value: 0.51079
- task:
name: Translation slv-fra
type: translation
args: slv-fra
dataset:
name: flores101-devtest
type: flores_101
args: slv fra devtest
metrics:
- name: BLEU
type: bleu
value: 31.5
- name: chr-F
type: chrf
value: 0.58233
- task:
name: Translation slv-ita
type: translation
args: slv-ita
dataset:
name: flores101-devtest
type: flores_101
args: slv ita devtest
metrics:
- name: BLEU
type: bleu
value: 22.4
- name: chr-F
type: chrf
value: 0.52390
- task:
name: Translation slv-por
type: translation
args: slv-por
dataset:
name: flores101-devtest
type: flores_101
args: slv por devtest
metrics:
- name: BLEU
type: bleu
value: 29.0
- name: chr-F
type: chrf
value: 0.56436
- task:
name: Translation slv-ron
type: translation
args: slv-ron
dataset:
name: flores101-devtest
type: flores_101
args: slv ron devtest
metrics:
- name: BLEU
type: bleu
value: 25.0
- name: chr-F
type: chrf
value: 0.53116
- task:
name: Translation slv-spa
type: translation
args: slv-spa
dataset:
name: flores101-devtest
type: flores_101
args: slv spa devtest
metrics:
- name: BLEU
type: bleu
value: 21.1
- name: chr-F
type: chrf
value: 0.49621
- task:
name: Translation srp_Cyrl-fra
type: translation
args: srp_Cyrl-fra
dataset:
name: flores101-devtest
type: flores_101
args: srp_Cyrl fra devtest
metrics:
- name: BLEU
type: bleu
value: 36.0
- name: chr-F
type: chrf
value: 0.62110
- task:
name: Translation srp_Cyrl-ita
type: translation
args: srp_Cyrl-ita
dataset:
name: flores101-devtest
type: flores_101
args: srp_Cyrl ita devtest
metrics:
- name: BLEU
type: bleu
value: 23.9
- name: chr-F
type: chrf
value: 0.54083
- task:
name: Translation srp_Cyrl-por
type: translation
args: srp_Cyrl-por
dataset:
name: flores101-devtest
type: flores_101
args: srp_Cyrl por devtest
metrics:
- name: BLEU
type: bleu
value: 34.9
- name: chr-F
type: chrf
value: 0.61248
- task:
name: Translation srp_Cyrl-ron
type: translation
args: srp_Cyrl-ron
dataset:
name: flores101-devtest
type: flores_101
args: srp_Cyrl ron devtest
metrics:
- name: BLEU
type: bleu
value: 28.8
- name: chr-F
type: chrf
value: 0.56235
- task:
name: Translation srp_Cyrl-spa
type: translation
args: srp_Cyrl-spa
dataset:
name: flores101-devtest
type: flores_101
args: srp_Cyrl spa devtest
metrics:
- name: BLEU
type: bleu
value: 22.8
- name: chr-F
type: chrf
value: 0.51698
- task:
name: Translation bul-fra
type: translation
args: bul-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: bul-fra
metrics:
- name: BLEU
type: bleu
value: 52.9
- name: chr-F
type: chrf
value: 0.68971
- task:
name: Translation bul-ita
type: translation
args: bul-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: bul-ita
metrics:
- name: BLEU
type: bleu
value: 45.1
- name: chr-F
type: chrf
value: 0.66412
- task:
name: Translation bul-spa
type: translation
args: bul-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: bul-spa
metrics:
- name: BLEU
type: bleu
value: 49.7
- name: chr-F
type: chrf
value: 0.66672
- task:
name: Translation hbs-fra
type: translation
args: hbs-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: hbs-fra
metrics:
- name: BLEU
type: bleu
value: 48.1
- name: chr-F
type: chrf
value: 0.66434
- task:
name: Translation hbs-ita
type: translation
args: hbs-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: hbs-ita
metrics:
- name: BLEU
type: bleu
value: 53.5
- name: chr-F
type: chrf
value: 0.72381
- task:
name: Translation hbs-spa
type: translation
args: hbs-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: hbs-spa
metrics:
- name: BLEU
type: bleu
value: 58.0
- name: chr-F
type: chrf
value: 0.73105
- task:
name: Translation hrv-fra
type: translation
args: hrv-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: hrv-fra
metrics:
- name: BLEU
type: bleu
value: 44.3
- name: chr-F
type: chrf
value: 0.62800
- task:
name: Translation hrv-spa
type: translation
args: hrv-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: hrv-spa
metrics:
- name: BLEU
type: bleu
value: 57.5
- name: chr-F
type: chrf
value: 0.71370
- task:
name: Translation mkd-spa
type: translation
args: mkd-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: mkd-spa
metrics:
- name: BLEU
type: bleu
value: 62.1
- name: chr-F
type: chrf
value: 0.75366
- task:
name: Translation srp_Latn-ita
type: translation
args: srp_Latn-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: srp_Latn-ita
metrics:
- name: BLEU
type: bleu
value: 59.6
- name: chr-F
type: chrf
value: 0.76045
---
# opus-mt-tc-big-zls-itc
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from South Slavic languages (zls) to Italic languages (itc).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2022-08-10
- **License:** CC-BY-4.0
- **Language(s):**
- Source Language(s): bos_Latn bul hbs hrv mkd slv srp_Cyrl srp_Latn
- Target Language(s): fra ita por spa
- Valid Target Language Labels: >>fra<< >>ita<< >>por<< >>spa<<
- **Original Model**: [opusTCv20210807_transformer-big_2022-08-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-itc/opusTCv20210807_transformer-big_2022-08-10.zip)
- **Resources for more information:**
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- More information about released models for this language pair: [OPUS-MT zls-itc README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-itc/README.md)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>fra<<`
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>fra<< Dobar dan, kako si?",
">>spa<< Znam da je ovo čudno."
]
model_name = "pytorch-models/opus-mt-tc-big-zls-itc"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Bonjour, comment allez-vous ?
# Sé que esto es raro.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zls-itc")
print(pipe(">>fra<< Dobar dan, kako si?"))
# expected output: Bonjour, comment allez-vous ?
```
## Training
- **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-08-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-itc/opusTCv20210807_transformer-big_2022-08-10.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* test set translations: [opusTCv20210807_transformer-big_2022-08-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-itc/opusTCv20210807_transformer-big_2022-08-10.test.txt)
* test set scores: [opusTCv20210807_transformer-big_2022-08-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-itc/opusTCv20210807_transformer-big_2022-08-10.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| bul-fra | tatoeba-test-v2021-08-07 | 0.68971 | 52.9 | 446 | 3669 |
| bul-ita | tatoeba-test-v2021-08-07 | 0.66412 | 45.1 | 2500 | 16951 |
| bul-spa | tatoeba-test-v2021-08-07 | 0.66672 | 49.7 | 286 | 1783 |
| hbs-fra | tatoeba-test-v2021-08-07 | 0.66434 | 48.1 | 474 | 3370 |
| hbs-ita | tatoeba-test-v2021-08-07 | 0.72381 | 53.5 | 534 | 3208 |
| hbs-spa | tatoeba-test-v2021-08-07 | 0.73105 | 58.0 | 607 | 3766 |
| hrv-fra | tatoeba-test-v2021-08-07 | 0.62800 | 44.3 | 258 | 1943 |
| hrv-spa | tatoeba-test-v2021-08-07 | 0.71370 | 57.5 | 254 | 1702 |
| mkd-spa | tatoeba-test-v2021-08-07 | 0.75366 | 62.1 | 217 | 1121 |
| srp_Latn-ita | tatoeba-test-v2021-08-07 | 0.76045 | 59.6 | 212 | 1292 |
| bul-fra | flores101-devtest | 0.60640 | 34.4 | 1012 | 28343 |
| bul-ita | flores101-devtest | 0.54135 | 24.0 | 1012 | 27306 |
| bul-por | flores101-devtest | 0.59322 | 32.4 | 1012 | 26519 |
| bul-ron | flores101-devtest | 0.55558 | 27.1 | 1012 | 26799 |
| bul-spa | flores101-devtest | 0.50962 | 22.4 | 1012 | 29199 |
| hrv-fra | flores101-devtest | 0.59349 | 33.1 | 1012 | 28343 |
| hrv-ita | flores101-devtest | 0.52980 | 23.5 | 1012 | 27306 |
| hrv-por | flores101-devtest | 0.57402 | 30.2 | 1012 | 26519 |
| hrv-ron | flores101-devtest | 0.53650 | 25.9 | 1012 | 26799 |
| hrv-spa | flores101-devtest | 0.50161 | 21.5 | 1012 | 29199 |
| mkd-fra | flores101-devtest | 0.60801 | 35.2 | 1012 | 28343 |
| mkd-ita | flores101-devtest | 0.53543 | 23.9 | 1012 | 27306 |
| mkd-por | flores101-devtest | 0.59648 | 33.9 | 1012 | 26519 |
| mkd-ron | flores101-devtest | 0.54998 | 28.0 | 1012 | 26799 |
| mkd-spa | flores101-devtest | 0.51079 | 22.8 | 1012 | 29199 |
| slv-fra | flores101-devtest | 0.58233 | 31.5 | 1012 | 28343 |
| slv-ita | flores101-devtest | 0.52390 | 22.4 | 1012 | 27306 |
| slv-por | flores101-devtest | 0.56436 | 29.0 | 1012 | 26519 |
| slv-ron | flores101-devtest | 0.53116 | 25.0 | 1012 | 26799 |
| slv-spa | flores101-devtest | 0.49621 | 21.1 | 1012 | 29199 |
| srp_Cyrl-fra | flores101-devtest | 0.62110 | 36.0 | 1012 | 28343 |
| srp_Cyrl-ita | flores101-devtest | 0.54083 | 23.9 | 1012 | 27306 |
| srp_Cyrl-por | flores101-devtest | 0.61248 | 34.9 | 1012 | 26519 |
| srp_Cyrl-ron | flores101-devtest | 0.56235 | 28.8 | 1012 | 26799 |
| srp_Cyrl-spa | flores101-devtest | 0.51698 | 22.8 | 1012 | 29199 |
## Citation Information
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 8b9f0b0
* port time: Fri Aug 12 13:57:47 EEST 2022
* port machine: LM0-400-22516.local