EMOTION-AI-distilbert

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6175
  • Accuracy: 0.5190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 32
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0921 50 2.6496 0.3000
No log 0.1842 100 2.2870 0.4014
No log 0.2762 150 2.0499 0.4576
No log 0.3683 200 1.9011 0.4876
No log 0.4604 250 1.8260 0.4985
No log 0.5525 300 1.7397 0.5210
No log 0.6446 350 1.6916 0.5250
No log 0.7366 400 1.6654 0.5346
No log 0.8287 450 1.6198 0.5408
2.0074 0.9208 500 1.5843 0.5448
2.0074 1.0129 550 1.5713 0.5538
2.0074 1.1050 600 1.5559 0.5552
2.0074 1.1971 650 1.5373 0.5549
2.0074 1.2891 700 1.5191 0.5597
2.0074 1.3812 750 1.5112 0.5622
2.0074 1.4733 800 1.4986 0.5581
2.0074 1.5654 850 1.4759 0.5640
2.0074 1.6575 900 1.4859 0.5587
2.0074 1.7495 950 1.4962 0.5538
1.476 1.8416 1000 1.4550 0.5647
1.476 1.9337 1050 1.4445 0.5684
1.476 2.0258 1100 1.4560 0.5658
1.476 2.1179 1150 1.4459 0.5737
1.476 2.2099 1200 1.4357 0.5777
1.476 2.3020 1250 1.4315 0.5716
1.476 2.3941 1300 1.4432 0.5779
1.476 2.4862 1350 1.4483 0.5669
1.476 2.5783 1400 1.4340 0.5704
1.476 2.6703 1450 1.4357 0.5692
1.2882 2.7624 1500 1.4298 0.5678
1.2882 2.8545 1550 1.4248 0.5775
1.2882 2.9466 1600 1.4209 0.5737
1.2882 3.0387 1650 1.4215 0.5761
1.2882 3.1308 1700 1.4326 0.5677
1.2882 3.2228 1750 1.4630 0.5593
1.2882 3.3149 1800 1.4505 0.5678
1.2882 3.4070 1850 1.4537 0.5677
1.2882 3.4991 1900 1.4491 0.5700
1.2882 3.5912 1950 1.4504 0.5695
1.1551 3.6832 2000 1.4532 0.5600
1.1551 3.7753 2050 1.4601 0.5642
1.1551 3.8674 2100 1.4482 0.5708
1.1551 3.9595 2150 1.4568 0.5652
1.1551 4.0516 2200 1.4610 0.5642
1.1551 4.1436 2250 1.4919 0.5620
1.1551 4.2357 2300 1.4863 0.5663
1.1551 4.3278 2350 1.5135 0.5586
1.1551 4.4199 2400 1.4971 0.5642
1.1551 4.5120 2450 1.5065 0.5595
1.0118 4.6041 2500 1.5057 0.5608
1.0118 4.6961 2550 1.5217 0.5553
1.0118 4.7882 2600 1.5260 0.5509
1.0118 4.8803 2650 1.5149 0.5583
1.0118 4.9724 2700 1.5255 0.5609
1.0118 5.0645 2750 1.5315 0.5569
1.0118 5.1565 2800 1.5511 0.5504
1.0118 5.2486 2850 1.5621 0.5539
1.0118 5.3407 2900 1.5760 0.5622
1.0118 5.4328 2950 1.5851 0.5504
0.8868 5.5249 3000 1.5944 0.5546
0.8868 5.6169 3050 1.5948 0.5541
0.8868 5.7090 3100 1.6025 0.5447
0.8868 5.8011 3150 1.5968 0.5456
0.8868 5.8932 3200 1.5893 0.5479
0.8868 5.9853 3250 1.6150 0.5472
0.8868 6.0773 3300 1.6327 0.5509
0.8868 6.1694 3350 1.6535 0.5578
0.8868 6.2615 3400 1.6627 0.5469
0.8868 6.3536 3450 1.6689 0.5475
0.7499 6.4457 3500 1.6913 0.5343
0.7499 6.5378 3550 1.7123 0.5422
0.7499 6.6298 3600 1.7112 0.5379
0.7499 6.7219 3650 1.7220 0.5344
0.7499 6.8140 3700 1.7018 0.5431
0.7499 6.9061 3750 1.7093 0.5354
0.7499 6.9982 3800 1.7227 0.5449
0.7499 7.0902 3850 1.7399 0.5446
0.7499 7.1823 3900 1.7616 0.5371
0.7499 7.2744 3950 1.7855 0.5337
0.6473 7.3665 4000 1.7811 0.5362
0.6473 7.4586 4050 1.7944 0.5369
0.6473 7.5506 4100 1.8108 0.5367
0.6473 7.6427 4150 1.8058 0.5370
0.6473 7.7348 4200 1.8092 0.5392
0.6473 7.8269 4250 1.8322 0.5291
0.6473 7.9190 4300 1.8419 0.5283
0.6473 8.0110 4350 1.8451 0.5405
0.6473 8.1031 4400 1.8832 0.5312
0.6473 8.1952 4450 1.8869 0.5329
0.5375 8.2873 4500 1.9002 0.5377
0.5375 8.3794 4550 1.9259 0.5252
0.5375 8.4715 4600 1.9316 0.5264
0.5375 8.5635 4650 1.9401 0.5255
0.5375 8.6556 4700 1.9624 0.5294
0.5375 8.7477 4750 1.9661 0.5212
0.5375 8.8398 4800 1.9745 0.5192
0.5375 8.9319 4850 1.9598 0.5365
0.5375 9.0239 4900 1.9900 0.5278
0.5375 9.1160 4950 2.0058 0.5314
0.4498 9.2081 5000 2.0130 0.5259
0.4498 9.3002 5050 2.0354 0.5299
0.4498 9.3923 5100 2.0325 0.5313
0.4498 9.4843 5150 2.0508 0.5167
0.4498 9.5764 5200 2.0892 0.5240
0.4498 9.6685 5250 2.0906 0.5183
0.4498 9.7606 5300 2.0819 0.5309
0.4498 9.8527 5350 2.0995 0.5225
0.4498 9.9448 5400 2.1054 0.5205
0.4498 10.0368 5450 2.1189 0.5226
0.3664 10.1289 5500 2.1513 0.5289
0.3664 10.2210 5550 2.1673 0.5248
0.3664 10.3131 5600 2.1481 0.5205
0.3664 10.4052 5650 2.1662 0.5316
0.3664 10.4972 5700 2.1811 0.5176
0.3664 10.5893 5750 2.2210 0.5255
0.3664 10.6814 5800 2.2244 0.5198
0.3664 10.7735 5850 2.1979 0.5199
0.3664 10.8656 5900 2.2120 0.5161
0.3664 10.9576 5950 2.2204 0.5139
0.3156 11.0497 6000 2.2456 0.5244
0.3156 11.1418 6050 2.2480 0.5226
0.3156 11.2339 6100 2.2882 0.5121
0.3156 11.3260 6150 2.2628 0.5251
0.3156 11.4180 6200 2.3119 0.5202
0.3156 11.5101 6250 2.3132 0.5108
0.3156 11.6022 6300 2.3214 0.5266
0.3156 11.6943 6350 2.3335 0.5113
0.3156 11.7864 6400 2.3260 0.5170
0.3156 11.8785 6450 2.3309 0.5250
0.2574 11.9705 6500 2.3376 0.5200
0.2574 12.0626 6550 2.3590 0.5202
0.2574 12.1547 6600 2.3936 0.5203
0.2574 12.2468 6650 2.4195 0.5096
0.2574 12.3389 6700 2.3977 0.5208
0.2574 12.4309 6750 2.4062 0.5195
0.2574 12.5230 6800 2.4148 0.5070
0.2574 12.6151 6850 2.3926 0.5238
0.2574 12.7072 6900 2.4649 0.5280
0.2574 12.7993 6950 2.4390 0.5104
0.2141 12.8913 7000 2.4747 0.5100
0.2141 12.9834 7050 2.4723 0.5139
0.2141 13.0755 7100 2.4854 0.5131
0.2141 13.1676 7150 2.4948 0.5040
0.2141 13.2597 7200 2.5408 0.5048
0.2141 13.3517 7250 2.4955 0.5196
0.2141 13.4438 7300 2.5269 0.5167
0.2141 13.5359 7350 2.5142 0.5129
0.2141 13.6280 7400 2.5483 0.5089
0.2141 13.7201 7450 2.5316 0.5097
0.1803 13.8122 7500 2.5726 0.5107
0.1803 13.9042 7550 2.5496 0.5220
0.1803 13.9963 7600 2.5697 0.5116
0.1803 14.0884 7650 2.5899 0.5090
0.1803 14.1805 7700 2.5814 0.5208
0.1803 14.2726 7750 2.6149 0.5185
0.1803 14.3646 7800 2.6136 0.5181
0.1803 14.4567 7850 2.6250 0.5270
0.1803 14.5488 7900 2.6196 0.5179
0.1803 14.6409 7950 2.6376 0.5144
0.148 14.7330 8000 2.6448 0.5174
0.148 14.8250 8050 2.6503 0.5183
0.148 14.9171 8100 2.6473 0.5235
0.148 15.0092 8150 2.6824 0.5066
0.148 15.1013 8200 2.6793 0.5107
0.148 15.1934 8250 2.7011 0.5251
0.148 15.2855 8300 2.7074 0.5090
0.148 15.3775 8350 2.7121 0.5134
0.148 15.4696 8400 2.7508 0.5038
0.148 15.5617 8450 2.7502 0.5172
0.1301 15.6538 8500 2.7507 0.5180
0.1301 15.7459 8550 2.7449 0.5120
0.1301 15.8379 8600 2.7547 0.5205
0.1301 15.9300 8650 2.7351 0.5225
0.1301 16.0221 8700 2.7622 0.5172
0.1301 16.1142 8750 2.7757 0.5165
0.1301 16.2063 8800 2.7955 0.5169
0.1301 16.2983 8850 2.8096 0.5236
0.1301 16.3904 8900 2.8342 0.5182
0.1301 16.4825 8950 2.8554 0.5041
0.1103 16.5746 9000 2.8439 0.5200
0.1103 16.6667 9050 2.8411 0.5248
0.1103 16.7587 9100 2.8346 0.5184
0.1103 16.8508 9150 2.8771 0.5088
0.1103 16.9429 9200 2.8701 0.5062
0.1103 17.0350 9250 2.8685 0.5127
0.1103 17.1271 9300 2.8680 0.5185
0.1103 17.2192 9350 2.8954 0.5219
0.1103 17.3112 9400 2.9458 0.5100
0.1103 17.4033 9450 2.9223 0.5168
0.101 17.4954 9500 2.9091 0.5198
0.101 17.5875 9550 2.9177 0.5236
0.101 17.6796 9600 2.9217 0.5207
0.101 17.7716 9650 2.9529 0.5111
0.101 17.8637 9700 2.9309 0.5182
0.101 17.9558 9750 2.9305 0.5204
0.101 18.0479 9800 2.9628 0.5157
0.101 18.1400 9850 2.9870 0.5141
0.101 18.2320 9900 2.9858 0.5100
0.101 18.3241 9950 3.0014 0.5055
0.0864 18.4162 10000 2.9569 0.5284
0.0864 18.5083 10050 2.9794 0.5212
0.0864 18.6004 10100 3.0051 0.5105
0.0864 18.6924 10150 2.9873 0.5189
0.0864 18.7845 10200 3.0042 0.5090
0.0864 18.8766 10250 3.0372 0.5143
0.0864 18.9687 10300 3.0172 0.5162
0.0864 19.0608 10350 3.0777 0.5135
0.0864 19.1529 10400 3.0752 0.5190
0.0864 19.2449 10450 3.0528 0.5208
0.0738 19.3370 10500 3.0634 0.5229
0.0738 19.4291 10550 3.0784 0.5225
0.0738 19.5212 10600 3.1123 0.5184
0.0738 19.6133 10650 3.1133 0.5198
0.0738 19.7053 10700 3.1186 0.5245
0.0738 19.7974 10750 3.1073 0.5111
0.0738 19.8895 10800 3.1036 0.5197
0.0738 19.9816 10850 3.1277 0.5050
0.0738 20.0737 10900 3.1015 0.5131
0.0738 20.1657 10950 3.1220 0.5190
0.0695 20.2578 11000 3.1118 0.5164
0.0695 20.3499 11050 3.1307 0.5235
0.0695 20.4420 11100 3.1571 0.5141
0.0695 20.5341 11150 3.1683 0.5246
0.0695 20.6262 11200 3.1290 0.5223
0.0695 20.7182 11250 3.1500 0.5182
0.0695 20.8103 11300 3.1576 0.5198
0.0695 20.9024 11350 3.1877 0.5141
0.0695 20.9945 11400 3.1929 0.5189
0.0695 21.0866 11450 3.2077 0.5177
0.0564 21.1786 11500 3.1984 0.5146
0.0564 21.2707 11550 3.2214 0.5234
0.0564 21.3628 11600 3.2058 0.5202
0.0564 21.4549 11650 3.2320 0.5146
0.0564 21.5470 11700 3.2194 0.5153
0.0564 21.6390 11750 3.2457 0.5210
0.0564 21.7311 11800 3.2370 0.5179
0.0564 21.8232 11850 3.2238 0.5149
0.0564 21.9153 11900 3.2487 0.5170
0.0564 22.0074 11950 3.2481 0.5223
0.051 22.0994 12000 3.2677 0.5130
0.051 22.1915 12050 3.2518 0.5220
0.051 22.2836 12100 3.2738 0.5160
0.051 22.3757 12150 3.2881 0.5150
0.051 22.4678 12200 3.2834 0.5187
0.051 22.5599 12250 3.2892 0.5211
0.051 22.6519 12300 3.2891 0.5196
0.051 22.7440 12350 3.2932 0.5229
0.051 22.8361 12400 3.2828 0.5168
0.051 22.9282 12450 3.3304 0.5101
0.0469 23.0203 12500 3.2958 0.5169
0.0469 23.1123 12550 3.3224 0.5197
0.0469 23.2044 12600 3.3234 0.5203
0.0469 23.2965 12650 3.3643 0.5141
0.0469 23.3886 12700 3.3769 0.5122
0.0469 23.4807 12750 3.3603 0.5167
0.0469 23.5727 12800 3.3695 0.5162
0.0469 23.6648 12850 3.3652 0.5109
0.0469 23.7569 12900 3.3760 0.5100
0.0469 23.8490 12950 3.3764 0.5053
0.0385 23.9411 13000 3.3635 0.5150
0.0385 24.0331 13050 3.3932 0.5270
0.0385 24.1252 13100 3.3748 0.5236
0.0385 24.2173 13150 3.3946 0.5153
0.0385 24.3094 13200 3.3851 0.5172
0.0385 24.4015 13250 3.4067 0.5223
0.0385 24.4936 13300 3.4243 0.5127
0.0385 24.5856 13350 3.4289 0.5194
0.0385 24.6777 13400 3.4279 0.5213
0.0385 24.7698 13450 3.4420 0.5164
0.0381 24.8619 13500 3.4355 0.5198
0.0381 24.9540 13550 3.4308 0.5207
0.0381 25.0460 13600 3.4482 0.5208
0.0381 25.1381 13650 3.4440 0.5215
0.0381 25.2302 13700 3.4556 0.5179
0.0381 25.3223 13750 3.4385 0.5233
0.0381 25.4144 13800 3.4559 0.5210
0.0381 25.5064 13850 3.4453 0.5176
0.0381 25.5985 13900 3.4642 0.5153
0.0381 25.6906 13950 3.4710 0.5129
0.0336 25.7827 14000 3.4811 0.5139
0.0336 25.8748 14050 3.4829 0.5142
0.0336 25.9669 14100 3.4749 0.5111
0.0336 26.0589 14150 3.4598 0.5170
0.0336 26.1510 14200 3.4897 0.5104
0.0336 26.2431 14250 3.5020 0.5132
0.0336 26.3352 14300 3.5024 0.5126
0.0336 26.4273 14350 3.5071 0.5139
0.0336 26.5193 14400 3.4931 0.5128
0.0336 26.6114 14450 3.5010 0.5172
0.0301 26.7035 14500 3.5194 0.5177
0.0301 26.7956 14550 3.5073 0.5213
0.0301 26.8877 14600 3.5174 0.5142
0.0301 26.9797 14650 3.5124 0.5229
0.0301 27.0718 14700 3.5240 0.5172
0.0301 27.1639 14750 3.5184 0.5162
0.0301 27.2560 14800 3.5262 0.5139
0.0301 27.3481 14850 3.5179 0.5143
0.0301 27.4401 14900 3.5339 0.5192
0.0301 27.5322 14950 3.5296 0.5160
0.0296 27.6243 15000 3.5420 0.5147
0.0296 27.7164 15050 3.5544 0.5175
0.0296 27.8085 15100 3.5301 0.5154
0.0296 27.9006 15150 3.5497 0.5225
0.0296 27.9926 15200 3.5514 0.5211
0.0296 28.0847 15250 3.5709 0.5230
0.0296 28.1768 15300 3.5534 0.5145
0.0296 28.2689 15350 3.5594 0.5146
0.0296 28.3610 15400 3.5678 0.5205
0.0296 28.4530 15450 3.5623 0.5161
0.0265 28.5451 15500 3.5582 0.5202
0.0265 28.6372 15550 3.5703 0.5182
0.0265 28.7293 15600 3.5721 0.5195
0.0265 28.8214 15650 3.5712 0.5115
0.0265 28.9134 15700 3.5764 0.5199
0.0265 29.0055 15750 3.5729 0.5188
0.0265 29.0976 15800 3.5817 0.5167
0.0265 29.1897 15850 3.5884 0.5196
0.0265 29.2818 15900 3.5870 0.5202
0.0265 29.3738 15950 3.5933 0.5190
0.0227 29.4659 16000 3.5885 0.5226
0.0227 29.5580 16050 3.5954 0.5160
0.0227 29.6501 16100 3.5935 0.5220
0.0227 29.7422 16150 3.5984 0.5198
0.0227 29.8343 16200 3.6006 0.5206
0.0227 29.9263 16250 3.5972 0.5223
0.0227 30.0184 16300 3.5987 0.5185
0.0227 30.1105 16350 3.6008 0.5194
0.0227 30.2026 16400 3.6031 0.5183
0.0227 30.2947 16450 3.5968 0.5169
0.0234 30.3867 16500 3.6048 0.5154
0.0234 30.4788 16550 3.6054 0.5177
0.0234 30.5709 16600 3.6083 0.5159
0.0234 30.6630 16650 3.6099 0.5184
0.0234 30.7551 16700 3.6189 0.5199
0.0234 30.8471 16750 3.6109 0.5202
0.0234 30.9392 16800 3.6115 0.5192
0.0234 31.0313 16850 3.6149 0.5173
0.0234 31.1234 16900 3.6168 0.5189
0.0234 31.2155 16950 3.6169 0.5158
0.0215 31.3076 17000 3.6174 0.5142
0.0215 31.3996 17050 3.6174 0.5180
0.0215 31.4917 17100 3.6183 0.5181
0.0215 31.5838 17150 3.6192 0.5170
0.0215 31.6759 17200 3.6181 0.5181
0.0215 31.7680 17250 3.6177 0.5187
0.0215 31.8600 17300 3.6178 0.5188
0.0215 31.9521 17350 3.6175 0.5190

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hemg/EMOTION-AI-distilbert

Finetuned
(7301)
this model