EMOTION-AI-distilbert
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.6175
- Accuracy: 0.5190
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 32
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.0921 | 50 | 2.6496 | 0.3000 |
No log | 0.1842 | 100 | 2.2870 | 0.4014 |
No log | 0.2762 | 150 | 2.0499 | 0.4576 |
No log | 0.3683 | 200 | 1.9011 | 0.4876 |
No log | 0.4604 | 250 | 1.8260 | 0.4985 |
No log | 0.5525 | 300 | 1.7397 | 0.5210 |
No log | 0.6446 | 350 | 1.6916 | 0.5250 |
No log | 0.7366 | 400 | 1.6654 | 0.5346 |
No log | 0.8287 | 450 | 1.6198 | 0.5408 |
2.0074 | 0.9208 | 500 | 1.5843 | 0.5448 |
2.0074 | 1.0129 | 550 | 1.5713 | 0.5538 |
2.0074 | 1.1050 | 600 | 1.5559 | 0.5552 |
2.0074 | 1.1971 | 650 | 1.5373 | 0.5549 |
2.0074 | 1.2891 | 700 | 1.5191 | 0.5597 |
2.0074 | 1.3812 | 750 | 1.5112 | 0.5622 |
2.0074 | 1.4733 | 800 | 1.4986 | 0.5581 |
2.0074 | 1.5654 | 850 | 1.4759 | 0.5640 |
2.0074 | 1.6575 | 900 | 1.4859 | 0.5587 |
2.0074 | 1.7495 | 950 | 1.4962 | 0.5538 |
1.476 | 1.8416 | 1000 | 1.4550 | 0.5647 |
1.476 | 1.9337 | 1050 | 1.4445 | 0.5684 |
1.476 | 2.0258 | 1100 | 1.4560 | 0.5658 |
1.476 | 2.1179 | 1150 | 1.4459 | 0.5737 |
1.476 | 2.2099 | 1200 | 1.4357 | 0.5777 |
1.476 | 2.3020 | 1250 | 1.4315 | 0.5716 |
1.476 | 2.3941 | 1300 | 1.4432 | 0.5779 |
1.476 | 2.4862 | 1350 | 1.4483 | 0.5669 |
1.476 | 2.5783 | 1400 | 1.4340 | 0.5704 |
1.476 | 2.6703 | 1450 | 1.4357 | 0.5692 |
1.2882 | 2.7624 | 1500 | 1.4298 | 0.5678 |
1.2882 | 2.8545 | 1550 | 1.4248 | 0.5775 |
1.2882 | 2.9466 | 1600 | 1.4209 | 0.5737 |
1.2882 | 3.0387 | 1650 | 1.4215 | 0.5761 |
1.2882 | 3.1308 | 1700 | 1.4326 | 0.5677 |
1.2882 | 3.2228 | 1750 | 1.4630 | 0.5593 |
1.2882 | 3.3149 | 1800 | 1.4505 | 0.5678 |
1.2882 | 3.4070 | 1850 | 1.4537 | 0.5677 |
1.2882 | 3.4991 | 1900 | 1.4491 | 0.5700 |
1.2882 | 3.5912 | 1950 | 1.4504 | 0.5695 |
1.1551 | 3.6832 | 2000 | 1.4532 | 0.5600 |
1.1551 | 3.7753 | 2050 | 1.4601 | 0.5642 |
1.1551 | 3.8674 | 2100 | 1.4482 | 0.5708 |
1.1551 | 3.9595 | 2150 | 1.4568 | 0.5652 |
1.1551 | 4.0516 | 2200 | 1.4610 | 0.5642 |
1.1551 | 4.1436 | 2250 | 1.4919 | 0.5620 |
1.1551 | 4.2357 | 2300 | 1.4863 | 0.5663 |
1.1551 | 4.3278 | 2350 | 1.5135 | 0.5586 |
1.1551 | 4.4199 | 2400 | 1.4971 | 0.5642 |
1.1551 | 4.5120 | 2450 | 1.5065 | 0.5595 |
1.0118 | 4.6041 | 2500 | 1.5057 | 0.5608 |
1.0118 | 4.6961 | 2550 | 1.5217 | 0.5553 |
1.0118 | 4.7882 | 2600 | 1.5260 | 0.5509 |
1.0118 | 4.8803 | 2650 | 1.5149 | 0.5583 |
1.0118 | 4.9724 | 2700 | 1.5255 | 0.5609 |
1.0118 | 5.0645 | 2750 | 1.5315 | 0.5569 |
1.0118 | 5.1565 | 2800 | 1.5511 | 0.5504 |
1.0118 | 5.2486 | 2850 | 1.5621 | 0.5539 |
1.0118 | 5.3407 | 2900 | 1.5760 | 0.5622 |
1.0118 | 5.4328 | 2950 | 1.5851 | 0.5504 |
0.8868 | 5.5249 | 3000 | 1.5944 | 0.5546 |
0.8868 | 5.6169 | 3050 | 1.5948 | 0.5541 |
0.8868 | 5.7090 | 3100 | 1.6025 | 0.5447 |
0.8868 | 5.8011 | 3150 | 1.5968 | 0.5456 |
0.8868 | 5.8932 | 3200 | 1.5893 | 0.5479 |
0.8868 | 5.9853 | 3250 | 1.6150 | 0.5472 |
0.8868 | 6.0773 | 3300 | 1.6327 | 0.5509 |
0.8868 | 6.1694 | 3350 | 1.6535 | 0.5578 |
0.8868 | 6.2615 | 3400 | 1.6627 | 0.5469 |
0.8868 | 6.3536 | 3450 | 1.6689 | 0.5475 |
0.7499 | 6.4457 | 3500 | 1.6913 | 0.5343 |
0.7499 | 6.5378 | 3550 | 1.7123 | 0.5422 |
0.7499 | 6.6298 | 3600 | 1.7112 | 0.5379 |
0.7499 | 6.7219 | 3650 | 1.7220 | 0.5344 |
0.7499 | 6.8140 | 3700 | 1.7018 | 0.5431 |
0.7499 | 6.9061 | 3750 | 1.7093 | 0.5354 |
0.7499 | 6.9982 | 3800 | 1.7227 | 0.5449 |
0.7499 | 7.0902 | 3850 | 1.7399 | 0.5446 |
0.7499 | 7.1823 | 3900 | 1.7616 | 0.5371 |
0.7499 | 7.2744 | 3950 | 1.7855 | 0.5337 |
0.6473 | 7.3665 | 4000 | 1.7811 | 0.5362 |
0.6473 | 7.4586 | 4050 | 1.7944 | 0.5369 |
0.6473 | 7.5506 | 4100 | 1.8108 | 0.5367 |
0.6473 | 7.6427 | 4150 | 1.8058 | 0.5370 |
0.6473 | 7.7348 | 4200 | 1.8092 | 0.5392 |
0.6473 | 7.8269 | 4250 | 1.8322 | 0.5291 |
0.6473 | 7.9190 | 4300 | 1.8419 | 0.5283 |
0.6473 | 8.0110 | 4350 | 1.8451 | 0.5405 |
0.6473 | 8.1031 | 4400 | 1.8832 | 0.5312 |
0.6473 | 8.1952 | 4450 | 1.8869 | 0.5329 |
0.5375 | 8.2873 | 4500 | 1.9002 | 0.5377 |
0.5375 | 8.3794 | 4550 | 1.9259 | 0.5252 |
0.5375 | 8.4715 | 4600 | 1.9316 | 0.5264 |
0.5375 | 8.5635 | 4650 | 1.9401 | 0.5255 |
0.5375 | 8.6556 | 4700 | 1.9624 | 0.5294 |
0.5375 | 8.7477 | 4750 | 1.9661 | 0.5212 |
0.5375 | 8.8398 | 4800 | 1.9745 | 0.5192 |
0.5375 | 8.9319 | 4850 | 1.9598 | 0.5365 |
0.5375 | 9.0239 | 4900 | 1.9900 | 0.5278 |
0.5375 | 9.1160 | 4950 | 2.0058 | 0.5314 |
0.4498 | 9.2081 | 5000 | 2.0130 | 0.5259 |
0.4498 | 9.3002 | 5050 | 2.0354 | 0.5299 |
0.4498 | 9.3923 | 5100 | 2.0325 | 0.5313 |
0.4498 | 9.4843 | 5150 | 2.0508 | 0.5167 |
0.4498 | 9.5764 | 5200 | 2.0892 | 0.5240 |
0.4498 | 9.6685 | 5250 | 2.0906 | 0.5183 |
0.4498 | 9.7606 | 5300 | 2.0819 | 0.5309 |
0.4498 | 9.8527 | 5350 | 2.0995 | 0.5225 |
0.4498 | 9.9448 | 5400 | 2.1054 | 0.5205 |
0.4498 | 10.0368 | 5450 | 2.1189 | 0.5226 |
0.3664 | 10.1289 | 5500 | 2.1513 | 0.5289 |
0.3664 | 10.2210 | 5550 | 2.1673 | 0.5248 |
0.3664 | 10.3131 | 5600 | 2.1481 | 0.5205 |
0.3664 | 10.4052 | 5650 | 2.1662 | 0.5316 |
0.3664 | 10.4972 | 5700 | 2.1811 | 0.5176 |
0.3664 | 10.5893 | 5750 | 2.2210 | 0.5255 |
0.3664 | 10.6814 | 5800 | 2.2244 | 0.5198 |
0.3664 | 10.7735 | 5850 | 2.1979 | 0.5199 |
0.3664 | 10.8656 | 5900 | 2.2120 | 0.5161 |
0.3664 | 10.9576 | 5950 | 2.2204 | 0.5139 |
0.3156 | 11.0497 | 6000 | 2.2456 | 0.5244 |
0.3156 | 11.1418 | 6050 | 2.2480 | 0.5226 |
0.3156 | 11.2339 | 6100 | 2.2882 | 0.5121 |
0.3156 | 11.3260 | 6150 | 2.2628 | 0.5251 |
0.3156 | 11.4180 | 6200 | 2.3119 | 0.5202 |
0.3156 | 11.5101 | 6250 | 2.3132 | 0.5108 |
0.3156 | 11.6022 | 6300 | 2.3214 | 0.5266 |
0.3156 | 11.6943 | 6350 | 2.3335 | 0.5113 |
0.3156 | 11.7864 | 6400 | 2.3260 | 0.5170 |
0.3156 | 11.8785 | 6450 | 2.3309 | 0.5250 |
0.2574 | 11.9705 | 6500 | 2.3376 | 0.5200 |
0.2574 | 12.0626 | 6550 | 2.3590 | 0.5202 |
0.2574 | 12.1547 | 6600 | 2.3936 | 0.5203 |
0.2574 | 12.2468 | 6650 | 2.4195 | 0.5096 |
0.2574 | 12.3389 | 6700 | 2.3977 | 0.5208 |
0.2574 | 12.4309 | 6750 | 2.4062 | 0.5195 |
0.2574 | 12.5230 | 6800 | 2.4148 | 0.5070 |
0.2574 | 12.6151 | 6850 | 2.3926 | 0.5238 |
0.2574 | 12.7072 | 6900 | 2.4649 | 0.5280 |
0.2574 | 12.7993 | 6950 | 2.4390 | 0.5104 |
0.2141 | 12.8913 | 7000 | 2.4747 | 0.5100 |
0.2141 | 12.9834 | 7050 | 2.4723 | 0.5139 |
0.2141 | 13.0755 | 7100 | 2.4854 | 0.5131 |
0.2141 | 13.1676 | 7150 | 2.4948 | 0.5040 |
0.2141 | 13.2597 | 7200 | 2.5408 | 0.5048 |
0.2141 | 13.3517 | 7250 | 2.4955 | 0.5196 |
0.2141 | 13.4438 | 7300 | 2.5269 | 0.5167 |
0.2141 | 13.5359 | 7350 | 2.5142 | 0.5129 |
0.2141 | 13.6280 | 7400 | 2.5483 | 0.5089 |
0.2141 | 13.7201 | 7450 | 2.5316 | 0.5097 |
0.1803 | 13.8122 | 7500 | 2.5726 | 0.5107 |
0.1803 | 13.9042 | 7550 | 2.5496 | 0.5220 |
0.1803 | 13.9963 | 7600 | 2.5697 | 0.5116 |
0.1803 | 14.0884 | 7650 | 2.5899 | 0.5090 |
0.1803 | 14.1805 | 7700 | 2.5814 | 0.5208 |
0.1803 | 14.2726 | 7750 | 2.6149 | 0.5185 |
0.1803 | 14.3646 | 7800 | 2.6136 | 0.5181 |
0.1803 | 14.4567 | 7850 | 2.6250 | 0.5270 |
0.1803 | 14.5488 | 7900 | 2.6196 | 0.5179 |
0.1803 | 14.6409 | 7950 | 2.6376 | 0.5144 |
0.148 | 14.7330 | 8000 | 2.6448 | 0.5174 |
0.148 | 14.8250 | 8050 | 2.6503 | 0.5183 |
0.148 | 14.9171 | 8100 | 2.6473 | 0.5235 |
0.148 | 15.0092 | 8150 | 2.6824 | 0.5066 |
0.148 | 15.1013 | 8200 | 2.6793 | 0.5107 |
0.148 | 15.1934 | 8250 | 2.7011 | 0.5251 |
0.148 | 15.2855 | 8300 | 2.7074 | 0.5090 |
0.148 | 15.3775 | 8350 | 2.7121 | 0.5134 |
0.148 | 15.4696 | 8400 | 2.7508 | 0.5038 |
0.148 | 15.5617 | 8450 | 2.7502 | 0.5172 |
0.1301 | 15.6538 | 8500 | 2.7507 | 0.5180 |
0.1301 | 15.7459 | 8550 | 2.7449 | 0.5120 |
0.1301 | 15.8379 | 8600 | 2.7547 | 0.5205 |
0.1301 | 15.9300 | 8650 | 2.7351 | 0.5225 |
0.1301 | 16.0221 | 8700 | 2.7622 | 0.5172 |
0.1301 | 16.1142 | 8750 | 2.7757 | 0.5165 |
0.1301 | 16.2063 | 8800 | 2.7955 | 0.5169 |
0.1301 | 16.2983 | 8850 | 2.8096 | 0.5236 |
0.1301 | 16.3904 | 8900 | 2.8342 | 0.5182 |
0.1301 | 16.4825 | 8950 | 2.8554 | 0.5041 |
0.1103 | 16.5746 | 9000 | 2.8439 | 0.5200 |
0.1103 | 16.6667 | 9050 | 2.8411 | 0.5248 |
0.1103 | 16.7587 | 9100 | 2.8346 | 0.5184 |
0.1103 | 16.8508 | 9150 | 2.8771 | 0.5088 |
0.1103 | 16.9429 | 9200 | 2.8701 | 0.5062 |
0.1103 | 17.0350 | 9250 | 2.8685 | 0.5127 |
0.1103 | 17.1271 | 9300 | 2.8680 | 0.5185 |
0.1103 | 17.2192 | 9350 | 2.8954 | 0.5219 |
0.1103 | 17.3112 | 9400 | 2.9458 | 0.5100 |
0.1103 | 17.4033 | 9450 | 2.9223 | 0.5168 |
0.101 | 17.4954 | 9500 | 2.9091 | 0.5198 |
0.101 | 17.5875 | 9550 | 2.9177 | 0.5236 |
0.101 | 17.6796 | 9600 | 2.9217 | 0.5207 |
0.101 | 17.7716 | 9650 | 2.9529 | 0.5111 |
0.101 | 17.8637 | 9700 | 2.9309 | 0.5182 |
0.101 | 17.9558 | 9750 | 2.9305 | 0.5204 |
0.101 | 18.0479 | 9800 | 2.9628 | 0.5157 |
0.101 | 18.1400 | 9850 | 2.9870 | 0.5141 |
0.101 | 18.2320 | 9900 | 2.9858 | 0.5100 |
0.101 | 18.3241 | 9950 | 3.0014 | 0.5055 |
0.0864 | 18.4162 | 10000 | 2.9569 | 0.5284 |
0.0864 | 18.5083 | 10050 | 2.9794 | 0.5212 |
0.0864 | 18.6004 | 10100 | 3.0051 | 0.5105 |
0.0864 | 18.6924 | 10150 | 2.9873 | 0.5189 |
0.0864 | 18.7845 | 10200 | 3.0042 | 0.5090 |
0.0864 | 18.8766 | 10250 | 3.0372 | 0.5143 |
0.0864 | 18.9687 | 10300 | 3.0172 | 0.5162 |
0.0864 | 19.0608 | 10350 | 3.0777 | 0.5135 |
0.0864 | 19.1529 | 10400 | 3.0752 | 0.5190 |
0.0864 | 19.2449 | 10450 | 3.0528 | 0.5208 |
0.0738 | 19.3370 | 10500 | 3.0634 | 0.5229 |
0.0738 | 19.4291 | 10550 | 3.0784 | 0.5225 |
0.0738 | 19.5212 | 10600 | 3.1123 | 0.5184 |
0.0738 | 19.6133 | 10650 | 3.1133 | 0.5198 |
0.0738 | 19.7053 | 10700 | 3.1186 | 0.5245 |
0.0738 | 19.7974 | 10750 | 3.1073 | 0.5111 |
0.0738 | 19.8895 | 10800 | 3.1036 | 0.5197 |
0.0738 | 19.9816 | 10850 | 3.1277 | 0.5050 |
0.0738 | 20.0737 | 10900 | 3.1015 | 0.5131 |
0.0738 | 20.1657 | 10950 | 3.1220 | 0.5190 |
0.0695 | 20.2578 | 11000 | 3.1118 | 0.5164 |
0.0695 | 20.3499 | 11050 | 3.1307 | 0.5235 |
0.0695 | 20.4420 | 11100 | 3.1571 | 0.5141 |
0.0695 | 20.5341 | 11150 | 3.1683 | 0.5246 |
0.0695 | 20.6262 | 11200 | 3.1290 | 0.5223 |
0.0695 | 20.7182 | 11250 | 3.1500 | 0.5182 |
0.0695 | 20.8103 | 11300 | 3.1576 | 0.5198 |
0.0695 | 20.9024 | 11350 | 3.1877 | 0.5141 |
0.0695 | 20.9945 | 11400 | 3.1929 | 0.5189 |
0.0695 | 21.0866 | 11450 | 3.2077 | 0.5177 |
0.0564 | 21.1786 | 11500 | 3.1984 | 0.5146 |
0.0564 | 21.2707 | 11550 | 3.2214 | 0.5234 |
0.0564 | 21.3628 | 11600 | 3.2058 | 0.5202 |
0.0564 | 21.4549 | 11650 | 3.2320 | 0.5146 |
0.0564 | 21.5470 | 11700 | 3.2194 | 0.5153 |
0.0564 | 21.6390 | 11750 | 3.2457 | 0.5210 |
0.0564 | 21.7311 | 11800 | 3.2370 | 0.5179 |
0.0564 | 21.8232 | 11850 | 3.2238 | 0.5149 |
0.0564 | 21.9153 | 11900 | 3.2487 | 0.5170 |
0.0564 | 22.0074 | 11950 | 3.2481 | 0.5223 |
0.051 | 22.0994 | 12000 | 3.2677 | 0.5130 |
0.051 | 22.1915 | 12050 | 3.2518 | 0.5220 |
0.051 | 22.2836 | 12100 | 3.2738 | 0.5160 |
0.051 | 22.3757 | 12150 | 3.2881 | 0.5150 |
0.051 | 22.4678 | 12200 | 3.2834 | 0.5187 |
0.051 | 22.5599 | 12250 | 3.2892 | 0.5211 |
0.051 | 22.6519 | 12300 | 3.2891 | 0.5196 |
0.051 | 22.7440 | 12350 | 3.2932 | 0.5229 |
0.051 | 22.8361 | 12400 | 3.2828 | 0.5168 |
0.051 | 22.9282 | 12450 | 3.3304 | 0.5101 |
0.0469 | 23.0203 | 12500 | 3.2958 | 0.5169 |
0.0469 | 23.1123 | 12550 | 3.3224 | 0.5197 |
0.0469 | 23.2044 | 12600 | 3.3234 | 0.5203 |
0.0469 | 23.2965 | 12650 | 3.3643 | 0.5141 |
0.0469 | 23.3886 | 12700 | 3.3769 | 0.5122 |
0.0469 | 23.4807 | 12750 | 3.3603 | 0.5167 |
0.0469 | 23.5727 | 12800 | 3.3695 | 0.5162 |
0.0469 | 23.6648 | 12850 | 3.3652 | 0.5109 |
0.0469 | 23.7569 | 12900 | 3.3760 | 0.5100 |
0.0469 | 23.8490 | 12950 | 3.3764 | 0.5053 |
0.0385 | 23.9411 | 13000 | 3.3635 | 0.5150 |
0.0385 | 24.0331 | 13050 | 3.3932 | 0.5270 |
0.0385 | 24.1252 | 13100 | 3.3748 | 0.5236 |
0.0385 | 24.2173 | 13150 | 3.3946 | 0.5153 |
0.0385 | 24.3094 | 13200 | 3.3851 | 0.5172 |
0.0385 | 24.4015 | 13250 | 3.4067 | 0.5223 |
0.0385 | 24.4936 | 13300 | 3.4243 | 0.5127 |
0.0385 | 24.5856 | 13350 | 3.4289 | 0.5194 |
0.0385 | 24.6777 | 13400 | 3.4279 | 0.5213 |
0.0385 | 24.7698 | 13450 | 3.4420 | 0.5164 |
0.0381 | 24.8619 | 13500 | 3.4355 | 0.5198 |
0.0381 | 24.9540 | 13550 | 3.4308 | 0.5207 |
0.0381 | 25.0460 | 13600 | 3.4482 | 0.5208 |
0.0381 | 25.1381 | 13650 | 3.4440 | 0.5215 |
0.0381 | 25.2302 | 13700 | 3.4556 | 0.5179 |
0.0381 | 25.3223 | 13750 | 3.4385 | 0.5233 |
0.0381 | 25.4144 | 13800 | 3.4559 | 0.5210 |
0.0381 | 25.5064 | 13850 | 3.4453 | 0.5176 |
0.0381 | 25.5985 | 13900 | 3.4642 | 0.5153 |
0.0381 | 25.6906 | 13950 | 3.4710 | 0.5129 |
0.0336 | 25.7827 | 14000 | 3.4811 | 0.5139 |
0.0336 | 25.8748 | 14050 | 3.4829 | 0.5142 |
0.0336 | 25.9669 | 14100 | 3.4749 | 0.5111 |
0.0336 | 26.0589 | 14150 | 3.4598 | 0.5170 |
0.0336 | 26.1510 | 14200 | 3.4897 | 0.5104 |
0.0336 | 26.2431 | 14250 | 3.5020 | 0.5132 |
0.0336 | 26.3352 | 14300 | 3.5024 | 0.5126 |
0.0336 | 26.4273 | 14350 | 3.5071 | 0.5139 |
0.0336 | 26.5193 | 14400 | 3.4931 | 0.5128 |
0.0336 | 26.6114 | 14450 | 3.5010 | 0.5172 |
0.0301 | 26.7035 | 14500 | 3.5194 | 0.5177 |
0.0301 | 26.7956 | 14550 | 3.5073 | 0.5213 |
0.0301 | 26.8877 | 14600 | 3.5174 | 0.5142 |
0.0301 | 26.9797 | 14650 | 3.5124 | 0.5229 |
0.0301 | 27.0718 | 14700 | 3.5240 | 0.5172 |
0.0301 | 27.1639 | 14750 | 3.5184 | 0.5162 |
0.0301 | 27.2560 | 14800 | 3.5262 | 0.5139 |
0.0301 | 27.3481 | 14850 | 3.5179 | 0.5143 |
0.0301 | 27.4401 | 14900 | 3.5339 | 0.5192 |
0.0301 | 27.5322 | 14950 | 3.5296 | 0.5160 |
0.0296 | 27.6243 | 15000 | 3.5420 | 0.5147 |
0.0296 | 27.7164 | 15050 | 3.5544 | 0.5175 |
0.0296 | 27.8085 | 15100 | 3.5301 | 0.5154 |
0.0296 | 27.9006 | 15150 | 3.5497 | 0.5225 |
0.0296 | 27.9926 | 15200 | 3.5514 | 0.5211 |
0.0296 | 28.0847 | 15250 | 3.5709 | 0.5230 |
0.0296 | 28.1768 | 15300 | 3.5534 | 0.5145 |
0.0296 | 28.2689 | 15350 | 3.5594 | 0.5146 |
0.0296 | 28.3610 | 15400 | 3.5678 | 0.5205 |
0.0296 | 28.4530 | 15450 | 3.5623 | 0.5161 |
0.0265 | 28.5451 | 15500 | 3.5582 | 0.5202 |
0.0265 | 28.6372 | 15550 | 3.5703 | 0.5182 |
0.0265 | 28.7293 | 15600 | 3.5721 | 0.5195 |
0.0265 | 28.8214 | 15650 | 3.5712 | 0.5115 |
0.0265 | 28.9134 | 15700 | 3.5764 | 0.5199 |
0.0265 | 29.0055 | 15750 | 3.5729 | 0.5188 |
0.0265 | 29.0976 | 15800 | 3.5817 | 0.5167 |
0.0265 | 29.1897 | 15850 | 3.5884 | 0.5196 |
0.0265 | 29.2818 | 15900 | 3.5870 | 0.5202 |
0.0265 | 29.3738 | 15950 | 3.5933 | 0.5190 |
0.0227 | 29.4659 | 16000 | 3.5885 | 0.5226 |
0.0227 | 29.5580 | 16050 | 3.5954 | 0.5160 |
0.0227 | 29.6501 | 16100 | 3.5935 | 0.5220 |
0.0227 | 29.7422 | 16150 | 3.5984 | 0.5198 |
0.0227 | 29.8343 | 16200 | 3.6006 | 0.5206 |
0.0227 | 29.9263 | 16250 | 3.5972 | 0.5223 |
0.0227 | 30.0184 | 16300 | 3.5987 | 0.5185 |
0.0227 | 30.1105 | 16350 | 3.6008 | 0.5194 |
0.0227 | 30.2026 | 16400 | 3.6031 | 0.5183 |
0.0227 | 30.2947 | 16450 | 3.5968 | 0.5169 |
0.0234 | 30.3867 | 16500 | 3.6048 | 0.5154 |
0.0234 | 30.4788 | 16550 | 3.6054 | 0.5177 |
0.0234 | 30.5709 | 16600 | 3.6083 | 0.5159 |
0.0234 | 30.6630 | 16650 | 3.6099 | 0.5184 |
0.0234 | 30.7551 | 16700 | 3.6189 | 0.5199 |
0.0234 | 30.8471 | 16750 | 3.6109 | 0.5202 |
0.0234 | 30.9392 | 16800 | 3.6115 | 0.5192 |
0.0234 | 31.0313 | 16850 | 3.6149 | 0.5173 |
0.0234 | 31.1234 | 16900 | 3.6168 | 0.5189 |
0.0234 | 31.2155 | 16950 | 3.6169 | 0.5158 |
0.0215 | 31.3076 | 17000 | 3.6174 | 0.5142 |
0.0215 | 31.3996 | 17050 | 3.6174 | 0.5180 |
0.0215 | 31.4917 | 17100 | 3.6183 | 0.5181 |
0.0215 | 31.5838 | 17150 | 3.6192 | 0.5170 |
0.0215 | 31.6759 | 17200 | 3.6181 | 0.5181 |
0.0215 | 31.7680 | 17250 | 3.6177 | 0.5187 |
0.0215 | 31.8600 | 17300 | 3.6178 | 0.5188 |
0.0215 | 31.9521 | 17350 | 3.6175 | 0.5190 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Hemg/EMOTION-AI-distilbert
Base model
distilbert/distilbert-base-uncased