metadata
language:
- ar
metrics:
- accuracy
- bleu
library_name: transformers
pipeline_tag: text2text-generation
tags:
- Classification and Generation
- Classification
- Generation
- ArabicT5
widget:
- text: >-
خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون
فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار
للانترانيك
model-index:
- name: Hezam/arabic-T5-news-classification-generation
- task: type: classification and generation name: Classification_Generation
-The number in the generated text represents the category of the news, as shown below. category_mapping = {
'Political':1,
'Economy':2,
'Health':3,
'Sport':4,
'Culture':5,
'Technology':6,
'Art':7,
'Accidents':8
}
Pre-training Settings and Results on TyDi QA Development Dataset ( Model in this card is highlighted in bold )
Name | Type | Value | Verified |
---|---|---|---|
Accuracy | accuracy | 96.67% | true |
F1_score | f1_score | 96.67% | true |
BLEU | bleu | 96.23% | true |
Loss | loss | 0.57164502143 | true |
Example usage
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline
from arabert.preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor(model_name="aubmindlab/bert-base-arabertv2")
model_name="Hezam/arabic-T5-news-classification-generation"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار للانترانيك"
text_clean = arabert_prep.preprocess(text)
g=generation_pipeline(text_clean,
num_beams=10,
max_length=config.Generation_LEN,
top_p=0.9,
repetition_penalty = 3.0,
no_repeat_ngram_size = 3)[0]["generated_text"]
output: