|
--- |
|
language: |
|
- ar |
|
metrics: |
|
- accuracy |
|
- bleu |
|
library_name: transformers |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- Classification and Generation |
|
- Classification |
|
- Generation |
|
- ArabicT5 |
|
|
|
widget: |
|
- text: خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار للانترانيك |
|
|
|
|
|
--- |
|
model-index: |
|
- name: Hezam/arabic-T5-news-classification-generation |
|
results: |
|
- task: |
|
type: classification and generation |
|
name: Classification_Generation |
|
This model is under trial. |
|
|
|
The number in the generated text represents the category of the news, as shown below. |
|
category_mapping = { |
|
|
|
'Political':1, |
|
'Economy':2, |
|
'Health':3, |
|
'Sport':4, |
|
'Culture':5, |
|
'Technology':6, |
|
'Art':7, |
|
'Accidents':8 |
|
} |
|
|
|
## Pre-training Settings and Results on TyDi QA Development Dataset ( Model in this card is highlighted in bold ) |
|
|
|
| Name | Type | Value | Verified | |
|
|------------------|--------------|-------------|---------------| |
|
| Accuracy | accuracy | 96.67% | true | |
|
| F1_score | f1_score | 96.67% | true | |
|
| BLEU | bleu | 96.23% | true | |
|
| Loss | loss |0.57164502143| true | |
|
|
|
|
|
# Example usage |
|
```python |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline |
|
from arabert.preprocess import ArabertPreprocessor |
|
|
|
arabert_prep = ArabertPreprocessor(model_name="aubmindlab/bert-base-arabertv2") |
|
model_name="Hezam/arabic-T5-news-classification-generation" |
|
model = T5ForConditionalGeneration.from_pretrained(model_name) |
|
tokenizer = T5Tokenizer.from_pretrained(model_name) |
|
generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer) |
|
|
|
text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار للانترانيك" |
|
|
|
text_clean = arabert_prep.preprocess(text) |
|
g=generation_pipeline(text_clean, |
|
num_beams=10, |
|
max_length=config.Generation_LEN, |
|
top_p=0.9, |
|
repetition_penalty = 3.0, |
|
no_repeat_ngram_size = 3)[0]["generated_text"] |
|
``` |
|
|
|
```bash |
|
output: |
|
``` |