SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Hgkang00/FT-label-consent-10")
# Run inference
sentences = [
    'I engage in risky behaviors like reckless driving or reckless sexual encounters.',
    'Symptoms during a manic episode include inflated self-esteem or grandiosity,increased goal-directed activity, or excessive involvement in risky activities.',
    'Marked decrease in functioning in areas like work, interpersonal relations, or self-care since the onset of the disturbance.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4057
spearman_cosine 0.4158
pearson_manhattan 0.4294
spearman_manhattan 0.4164
pearson_euclidean 0.4293
spearman_euclidean 0.4158
pearson_dot 0.4057
spearman_dot 0.4158
pearson_max 0.4294
spearman_max 0.4164

Training Details

Training Dataset

Unnamed Dataset

  • Size: 33,800 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 29 tokens
    • mean: 29.0 tokens
    • max: 29 tokens
    • min: 14 tokens
    • mean: 25.15 tokens
    • max: 43 tokens
    • min: 0.0
    • mean: 0.06
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period I often hear voices telling me things that are not real, even when I'm alone in my room. 1.0
    Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period I have strong beliefs that people are plotting against me and trying to harm me, which makes it hard for me to trust anyone. 1.0
    Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period Sometimes, I see things that others around me don't see, like strange figures or objects. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 4,225 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 18 tokens
    • mean: 31.8 tokens
    • max: 60 tokens
    • min: 15 tokens
    • mean: 24.59 tokens
    • max: 41 tokens
    • min: 0.0
    • mean: 0.06
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period People around me have noticed that my behavior is becoming more erratic and unpredictable. 1.0
    Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period There are times when I repeat certain actions or words without any clear purpose, almost like being stuck in a loop. 0.0
    Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period I feel detached from reality at times and have trouble distinguishing between what is real and what is not. 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 128
  • num_train_epochs: 10
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss FT_label_spearman_cosine
0.0377 10 11.8816 - -
0.0755 20 12.0633 - -
0.1132 30 11.2972 - -
0.1509 40 11.4435 - -
0.1887 50 10.9872 - -
0.2264 60 10.3121 - -
0.2642 70 10.0711 - -
0.3019 80 9.6888 - -
0.3396 90 9.2037 - -
0.3774 100 8.6158 - -
0.4151 110 8.4605 - -
0.4528 120 8.202 - -
0.4906 130 7.9642 - -
0.5283 140 7.8384 - -
0.5660 150 7.8803 - -
0.6038 160 7.419 - -
1.0 133 8.435 8.1138 0.3813
2.0 266 7.7886 8.2494 0.4003
3.0 399 7.164 8.7060 0.4048
4.0 532 6.5921 9.5854 0.3882
5.0 665 6.2349 10.5716 0.4042
6.0 798 5.7831 10.9500 0.4147
7.0 931 5.4894 11.6387 0.4120
8.0 1064 5.2348 12.2129 0.4113
9.0 1197 5.0118 12.4632 0.4099
10.0 1330 4.8566 12.7203 0.4158

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
21
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hgkang00/FT-label-consent-10

Finetuned
(192)
this model

Evaluation results