alpaca-lora-65b-en-pt-es-ca

This model is a fine-tuned version of /gaueko1/hizkuntza-ereduak/LLaMA/lm/huggingface/65B on the HiTZ/alpaca_mt ['en', 'pt', 'es', 'ca'] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 63
  • total_train_batch_size: 126
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8069 0.06 100 0.8033
0.8008 0.13 200 0.7826
0.7687 0.19 300 0.7721
0.7719 0.25 400 0.7647
0.7585 0.32 500 0.7588
0.7578 0.38 600 0.7537
0.7505 0.44 700 0.7491
0.7531 0.51 800 0.7449
0.7394 0.57 900 0.7416
0.7368 0.63 1000 0.7387
0.7412 0.69 1100 0.7361
0.7344 0.76 1200 0.7288
0.7383 0.82 1300 0.7281
0.7378 0.88 1400 0.7274
0.7204 0.95 1500 0.7271

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train HiTZ/alpaca-lora-65b-en-pt-es-ca

Spaces using HiTZ/alpaca-lora-65b-en-pt-es-ca 22

Collection including HiTZ/alpaca-lora-65b-en-pt-es-ca