|
--- |
|
datasets: |
|
- HiTZ/AbstRCT-ES |
|
language: |
|
- es |
|
- en |
|
pipeline_tag: token-classification |
|
widget: |
|
- text: >- |
|
The dysuria resolved faster in patients implanted with 103Pd but was |
|
unaffected by the use of supplemental radiotherapy and/or androgen |
|
deprivation therapy. |
|
- text: >- |
|
La disuria se resolvió más rápidamente en los pacientes implantados con |
|
103Pd, pero no se vio afectada por el uso de radioterapia suplementaria |
|
y/o terapia de privación de andrógenos. |
|
--- |
|
|
|
# Cross-lingual Argument Mining in the Medical Domain |
|
|
|
This model is a fine-tuned version of mBERT for the argument mining task using AbstRCT data in English and Spanish. |
|
The dataset consists of abstracts of 5 disease types for argument component detection and argument relation classification: |
|
|
|
- `neoplasm`: 350 train, 100 dev and 50 test abstracts |
|
- `glaucoma_test`: 100 abstracts |
|
- `mixed_test`: 100 abstracts (20 on glaucoma, 20 on neoplasm, 20 on diabetes, 20 on hypertension, 20 on hepatitis) |
|
|
|
The results (F1 macro averaged at token level) achieved for each test set: |
|
|
|
Test | F1-macro | F1-Claim | F1-Premise |
|
--|-------|-------|------- |
|
Neoplasm | 82.36 | 74.89 | 89.07 |
|
Glaucoma | 80.52 | 75.22 | 84.86 |
|
Mixed | 81.69 | 75.06 | 88.57 |
|
|
|
You can find more information: |
|
|
|
- 📖 Paper: [Crosslingual Argument Mining in the Medical Domain](https://arxiv.org/abs/2301.10527) |
|
- 💻Code: [https://github.com/ragerri/abstrct-projections](https://github.com/ragerri/abstrct-projections) |
|
|
|
You can load the model as follows: |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained('HiTZ/mbert-argument-mining-es') |
|
```` |
|
|
|
## Citation |
|
|
|
````bibtex |
|
@misc{yeginbergen2024crosslingual, |
|
title={Cross-lingual Argument Mining in the Medical Domain}, |
|
author={Anar Yeginbergen and Rodrigo Agerri}, |
|
year={2024}, |
|
eprint={2301.10527}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
```` |
|
|
|
**Contact**: [Anar Yeginbergen](https://ixa.ehu.eus/node/13807?language=en) and [Rodrigo Agerri](https://ragerri.github.io/) |
|
HiTZ Center - Ixa, University of the Basque Country UPV/EHU |
|
|