Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,9 @@ language:
|
|
6 |
- en
|
7 |
pipeline_tag: token-classification
|
8 |
---
|
|
|
|
|
|
|
9 |
This model is a fine-tuned version of mBERT for the argument mining task using AbstRCT data in English and Spanish.
|
10 |
The dataset consists of abstracts of 5 disease types for argument component detection and argument relation classification:
|
11 |
|
@@ -21,6 +24,13 @@ The results achieved for each test set:
|
|
21 |
Glaucoma | 80.52 | 75.22 | 84.86
|
22 |
Mixed | 81.69 | 75.06 | 88.57
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
```python
|
25 |
from transformers import AutoModelForSequenceClassification
|
26 |
|
@@ -28,3 +38,15 @@ model = AutoModelForSequenceClassification.from_pretrained('HiTZ/mbert-argument-
|
|
28 |
```
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- en
|
7 |
pipeline_tag: token-classification
|
8 |
---
|
9 |
+
|
10 |
+
# Cross-lingual argument mining
|
11 |
+
|
12 |
This model is a fine-tuned version of mBERT for the argument mining task using AbstRCT data in English and Spanish.
|
13 |
The dataset consists of abstracts of 5 disease types for argument component detection and argument relation classification:
|
14 |
|
|
|
24 |
Glaucoma | 80.52 | 75.22 | 84.86
|
25 |
Mixed | 81.69 | 75.06 | 88.57
|
26 |
|
27 |
+
You can find more information:
|
28 |
+
|
29 |
+
- 📖 Paper: [Crosslingual Argument Mining in the Medical Domain](https://arxiv.org/abs/2301.10527)
|
30 |
+
- Code: [https://github.com/ragerri/abstrct-projections/tree/final](https://github.com/ragerri/abstrct-projections/tree/final)
|
31 |
+
|
32 |
+
You can load the model as follows:
|
33 |
+
|
34 |
```python
|
35 |
from transformers import AutoModelForSequenceClassification
|
36 |
|
|
|
38 |
```
|
39 |
|
40 |
|
41 |
+
## Citation
|
42 |
+
|
43 |
+
````bibtex
|
44 |
+
@misc{yeginbergen2024crosslingual,
|
45 |
+
title={Cross-lingual Argument Mining in the Medical Domain},
|
46 |
+
author={Anar Yeginbergen and Rodrigo Agerri},
|
47 |
+
year={2024},
|
48 |
+
eprint={2301.10527},
|
49 |
+
archivePrefix={arXiv},
|
50 |
+
primaryClass={cs.CL}
|
51 |
+
}
|
52 |
+
````
|