fine-tuned-bertMultilingual-casedNoNeutral
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 1.3286
- eval_accuracy: {'accuracy': 0.823321554770318}
- eval_f1score: {'f1': 0.8030371145082857}
- eval_runtime: 8.8957
- eval_samples_per_second: 31.813
- eval_steps_per_second: 4.047
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 61
- num_epochs: 20
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for Hina541/fine-tuned-bertMultilingual-casedNoNeutral
Base model
google-bert/bert-base-multilingual-cased