fine-tuned-bertMultilingual-casedNoNeutral

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 1.3286
  • eval_accuracy: {'accuracy': 0.823321554770318}
  • eval_f1score: {'f1': 0.8030371145082857}
  • eval_runtime: 8.8957
  • eval_samples_per_second: 31.813
  • eval_steps_per_second: 4.047
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 61
  • num_epochs: 20

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
178M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Hina541/fine-tuned-bertMultilingual-casedNoNeutral

Finetuned
(626)
this model