judicial-summarization-Mistral-finetuned_FL
This model is a fine-tuned version of unsloth/mistral-7b-v0.3-bnb-4bit on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8494
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1209 | 1.0 | 726 | 1.2393 |
1.2144 | 2.0 | 1452 | 1.2337 |
0.9173 | 3.0 | 2178 | 1.2850 |
0.694 | 4.0 | 2904 | 1.4016 |
0.4992 | 5.0 | 3630 | 1.5871 |
0.3276 | 6.0 | 4356 | 1.8494 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Hiranmai49/judicial-summarization-Mistral-finetuned_FL
Base model
mistralai/Mistral-7B-v0.3
Quantized
unsloth/mistral-7b-v0.3-bnb-4bit