judicial-summarization-llama-3-finetuned

This model is a fine-tuned version of unsloth/llama-3-8b-bnb-4bit on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
1.6197 0.9993 696 1.6757
1.5115 2.0 1393 1.6700
1.583 2.9993 2089 1.7025
1.3133 4.0 2786 1.7708
0.9935 4.9993 3482 1.8802
1.0666 5.9957 4176 2.0076

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Hiranmai49/judicial-summarization-llama-3-finetuned

Adapter
(195)
this model