judicial-summarization-llama-3-finetuned_mildsum_FL

This model is a fine-tuned version of unsloth/llama-3-8b-bnb-4bit on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
1.3073 0.9991 273 1.4746
1.3533 1.9982 546 1.4690
1.1871 2.9973 819 1.5012
1.008 4.0 1093 1.5703
0.8119 4.9991 1366 1.6773
0.6565 5.9945 1638 1.7972

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Hiranmai49/judicial-summarization-llama-3-finetuned_mildsum_FL

Adapter
(198)
this model