Uploaded model
- Developed by: HiroSan6595
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
LLM-JP-3-13B ファインチューニングモデル 使用方法 以下は、モデルの基本的な使用例です
"""python !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft
from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re
model_id = "llm-jp/llm-jp-3-13b" adapter_id = "HiroSan6595/llm-jp-3-13b-it-j_dpo2"
HF_TOKEN = "有効なHuggingFaceトークン"
dtype = None load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) datasets = [] with open("path to elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""
FastLanguageModel.for_inference(model)
results = [] for dt in tqdm(datasets): input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
import re json_file_id = re.sub(".*/", "", adapter_id) # with open(f"path to {json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') """
Model tree for HiroSan6595/llm-jp-3-13b-it-j_dpo2
Base model
llm-jp/llm-jp-3-13b