metadata
license: mit
library_name: peft
tags:
- trl
- reward-trainer
- generated_from_trainer
metrics:
- accuracy
base_model: openai-community/gpt2-large
model-index:
- name: >-
RM-HH-GPT2Large_helpful_gpt3_loraR64_40000_gpt2-large_shuffleTrue_extractchosenTrue
results: []
RM-HH-GPT2Large_helpful_gpt3_loraR64_40000_gpt2-large_shuffleTrue_extractchosenTrue
This model is a fine-tuned version of openai-community/gpt2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4911
- Accuracy: 0.7362
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8065 | 0.02 | 250 | 0.7702 | 0.4763 |
0.7485 | 0.04 | 500 | 0.6903 | 0.5578 |
0.6625 | 0.06 | 750 | 0.6116 | 0.6516 |
0.5815 | 0.08 | 1000 | 0.5742 | 0.6817 |
0.5657 | 0.1 | 1250 | 0.5565 | 0.6940 |
0.5608 | 0.13 | 1500 | 0.5479 | 0.7015 |
0.5611 | 0.15 | 1750 | 0.5418 | 0.7083 |
0.5342 | 0.17 | 2000 | 0.5386 | 0.7105 |
0.5842 | 0.19 | 2250 | 0.5319 | 0.7124 |
0.5096 | 0.21 | 2500 | 0.5293 | 0.7171 |
0.5234 | 0.23 | 2750 | 0.5258 | 0.7173 |
0.5321 | 0.25 | 3000 | 0.5243 | 0.7202 |
0.5295 | 0.27 | 3250 | 0.5212 | 0.7202 |
0.5211 | 0.29 | 3500 | 0.5220 | 0.7200 |
0.5119 | 0.31 | 3750 | 0.5215 | 0.7205 |
0.509 | 0.33 | 4000 | 0.5200 | 0.7226 |
0.5393 | 0.36 | 4250 | 0.5155 | 0.7230 |
0.5343 | 0.38 | 4500 | 0.5143 | 0.7267 |
0.4944 | 0.4 | 4750 | 0.5195 | 0.7277 |
0.5198 | 0.42 | 5000 | 0.5188 | 0.7258 |
0.523 | 0.44 | 5250 | 0.5206 | 0.7282 |
0.53 | 0.46 | 5500 | 0.5082 | 0.7264 |
0.5107 | 0.48 | 5750 | 0.5103 | 0.7307 |
0.502 | 0.5 | 6000 | 0.5163 | 0.7284 |
0.5198 | 0.52 | 6250 | 0.5132 | 0.7305 |
0.5879 | 0.54 | 6500 | 0.5067 | 0.7313 |
0.5174 | 0.57 | 6750 | 0.5061 | 0.7311 |
0.5062 | 0.59 | 7000 | 0.5053 | 0.7298 |
0.5265 | 0.61 | 7250 | 0.5064 | 0.7303 |
0.5043 | 0.63 | 7500 | 0.5096 | 0.7309 |
0.5291 | 0.65 | 7750 | 0.5073 | 0.7299 |
0.4966 | 0.67 | 8000 | 0.5141 | 0.7305 |
0.5361 | 0.69 | 8250 | 0.5086 | 0.7288 |
0.534 | 0.71 | 8500 | 0.5051 | 0.7288 |
0.5073 | 0.73 | 8750 | 0.5104 | 0.7286 |
0.5155 | 0.75 | 9000 | 0.5138 | 0.7290 |
0.5041 | 0.77 | 9250 | 0.5149 | 0.7294 |
0.5552 | 0.8 | 9500 | 0.5030 | 0.7288 |
0.5177 | 0.82 | 9750 | 0.4995 | 0.7294 |
0.4882 | 0.84 | 10000 | 0.5007 | 0.7337 |
0.5409 | 0.86 | 10250 | 0.4992 | 0.7320 |
0.5044 | 0.88 | 10500 | 0.4994 | 0.7311 |
0.4897 | 0.9 | 10750 | 0.5013 | 0.7322 |
0.509 | 0.92 | 11000 | 0.4999 | 0.7331 |
0.5256 | 0.94 | 11250 | 0.4950 | 0.7360 |
0.4976 | 0.96 | 11500 | 0.4937 | 0.7356 |
0.5033 | 0.98 | 11750 | 0.4952 | 0.7358 |
0.4917 | 1.0 | 12000 | 0.4939 | 0.7333 |
0.4615 | 1.03 | 12250 | 0.5005 | 0.7328 |
0.4797 | 1.05 | 12500 | 0.4981 | 0.7347 |
0.4872 | 1.07 | 12750 | 0.4997 | 0.7362 |
0.5106 | 1.09 | 13000 | 0.5012 | 0.7343 |
0.482 | 1.11 | 13250 | 0.5021 | 0.7365 |
0.4916 | 1.13 | 13500 | 0.4946 | 0.7367 |
0.4957 | 1.15 | 13750 | 0.4972 | 0.7379 |
0.4822 | 1.17 | 14000 | 0.5072 | 0.7379 |
0.4911 | 1.19 | 14250 | 0.5080 | 0.7343 |
0.5042 | 1.21 | 14500 | 0.5148 | 0.7343 |
0.4966 | 1.23 | 14750 | 0.5055 | 0.7350 |
0.527 | 1.26 | 15000 | 0.4945 | 0.7345 |
0.4544 | 1.28 | 15250 | 0.5070 | 0.7354 |
0.5198 | 1.3 | 15500 | 0.4993 | 0.7335 |
0.5138 | 1.32 | 15750 | 0.4958 | 0.7358 |
0.5324 | 1.34 | 16000 | 0.4917 | 0.7348 |
0.4695 | 1.36 | 16250 | 0.4951 | 0.7347 |
0.5016 | 1.38 | 16500 | 0.4938 | 0.7360 |
0.478 | 1.4 | 16750 | 0.4969 | 0.7345 |
0.4955 | 1.42 | 17000 | 0.4958 | 0.7345 |
0.5072 | 1.44 | 17250 | 0.4908 | 0.7341 |
0.4764 | 1.46 | 17500 | 0.4957 | 0.7345 |
0.5096 | 1.49 | 17750 | 0.4928 | 0.7347 |
0.4944 | 1.51 | 18000 | 0.4923 | 0.7331 |
0.4766 | 1.53 | 18250 | 0.4931 | 0.7333 |
0.515 | 1.55 | 18500 | 0.4897 | 0.7339 |
0.4672 | 1.57 | 18750 | 0.4920 | 0.7348 |
0.5122 | 1.59 | 19000 | 0.4921 | 0.7337 |
0.5395 | 1.61 | 19250 | 0.4899 | 0.7333 |
0.5088 | 1.63 | 19500 | 0.4892 | 0.7326 |
0.4864 | 1.65 | 19750 | 0.4895 | 0.7358 |
0.4605 | 1.67 | 20000 | 0.4968 | 0.7358 |
0.5165 | 1.7 | 20250 | 0.4940 | 0.7354 |
0.4955 | 1.72 | 20500 | 0.4919 | 0.7348 |
0.4923 | 1.74 | 20750 | 0.4906 | 0.7348 |
0.5121 | 1.76 | 21000 | 0.4905 | 0.7337 |
0.5068 | 1.78 | 21250 | 0.4892 | 0.7356 |
0.4767 | 1.8 | 21500 | 0.4900 | 0.7350 |
0.4976 | 1.82 | 21750 | 0.4904 | 0.7354 |
0.4934 | 1.84 | 22000 | 0.4893 | 0.7356 |
0.479 | 1.86 | 22250 | 0.4905 | 0.7352 |
0.4698 | 1.88 | 22500 | 0.4909 | 0.7347 |
0.4894 | 1.9 | 22750 | 0.4907 | 0.7352 |
0.509 | 1.93 | 23000 | 0.4907 | 0.7354 |
0.4805 | 1.95 | 23250 | 0.4914 | 0.7350 |
0.5152 | 1.97 | 23500 | 0.4911 | 0.7358 |
0.4935 | 1.99 | 23750 | 0.4911 | 0.7362 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2