HorcruxNo13's picture
Model save
0690452
|
raw
history blame
3.46 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: beit-base-patch16-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7333333333333333
          - name: Precision
            type: precision
            value: 0.708216298040535
          - name: Recall
            type: recall
            value: 0.7333333333333333

beit-base-patch16-224

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5490
  • Accuracy: 0.7333
  • Precision: 0.7082
  • Recall: 0.7333
  • F1 Score: 0.7050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 1.0 4 0.6369 0.725 0.5256 0.725 0.6094
No log 2.0 8 0.6192 0.7458 0.7215 0.7458 0.6907
No log 3.0 12 0.5699 0.725 0.5256 0.725 0.6094
0.727 4.0 16 0.6237 0.6792 0.6716 0.6792 0.6751
0.727 5.0 20 0.5533 0.7292 0.8028 0.7292 0.6191
0.727 6.0 24 0.5601 0.7375 0.7200 0.7375 0.6562
0.727 7.0 28 0.5901 0.7167 0.6944 0.7167 0.7013
0.5968 8.0 32 0.5543 0.7375 0.7081 0.7375 0.7080
0.5968 9.0 36 0.5780 0.7208 0.7095 0.7208 0.7141
0.5968 10.0 40 0.5389 0.7375 0.7049 0.7375 0.6990
0.5968 11.0 44 0.5438 0.7542 0.7306 0.7542 0.7238
0.5631 12.0 48 0.5426 0.7458 0.7187 0.7458 0.7145
0.5631 13.0 52 0.5383 0.7458 0.7187 0.7458 0.7145
0.5631 14.0 56 0.5432 0.7458 0.7239 0.7458 0.7269
0.541 15.0 60 0.5453 0.7417 0.7212 0.7417 0.7256

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3