Update chat_template.json to incorporate `generation` tag
#9
by
zjysteven
- opened
Incorporating generation
tag to chat_template.json so that return_assistant_tokens_mask
can work correctly with the tokenizer (https://github.com/huggingface/transformers/pull/30650/files). A self-contained test script is pasted below.
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b")
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image")
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant."},
]
},
{
"role": "user",
"content": [
{"type": "text", "text": "What is shown in this image?"},
{"type": "image"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "This is a picture of a cat."},
]
},
{
"role": "user",
"content": [
{"type": "text", "text": "What is the cat doing?"},
]
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "The cat is sleeping on a sofa. It looks very comfortable."},
]
}
]
template = (
"{% for message in messages %}"
"{{message['role'].capitalize()}}"
"{% if message['content'][0]['type'] == 'image' %}"
"{{':'}}"
"{% else %}"
"{{': '}}"
"{% endif %}"
"{% if message['role'] != 'assistant' %}"
"{% for line in message['content'] %}"
"{% if line['type'] == 'text' %}"
"{{line['text']}}"
"{% elif line['type'] == 'image' %}"
"{{ '<image>' }}"
"{% endif %}"
"{% endfor %}"
"<end_of_utterance>\n"
"{% else %}"
"{% for line in message['content'] %}"
"{% if line['type'] == 'text' %}"
"{% generation %}"
"{{line['text']}}"
"<end_of_utterance>\n"
"{% endgeneration %}"
"{% endif %}"
"{% endfor %}"
"{% endif %}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"{{ 'Assistant:' }}"
"{% endif %}"
)
print("\n")
print(repr(template))
print("\n")
prompt = processor.apply_chat_template(
conversation,
chat_template=template,
add_generation_prompt=False,
tokenize=False
)
print(prompt)
inputs = processor.apply_chat_template(
conversation,
chat_template=template,
add_generation_prompt=False,
tokenize=True,
return_assistant_tokens_mask=True,
return_dict=True
)
print(inputs['assistant_masks'])