RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (CUDABFloat16Type) should be the same
#4
by
Neiko2002
- opened
Running the example of the model card page:
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
model_path = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
processor = AutoProcessor.from_pretrained(model_path)
model = AutoModelForImageTextToText.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2"
).to("cuda")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{"type": "image", "path": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
]
},
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=64)
generated_texts = processor.batch_decode(
generated_ids,
skip_special_tokens=True,
)
print(generated_texts[0])
delivers the following error message
Traceback (most recent call last):
File "C:\Lang\Python\SurveillanceVideo\smolVLM2.py", line 49, in <module>
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=64)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\transformers\generation\utils.py", line 2227, in generate
result = self._sample(
input_ids,
...<5 lines>...
**model_kwargs,
)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\transformers\generation\utils.py", line 3215, in _sample
outputs = self(**model_inputs, return_dict=True)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\transformers\models\smolvlm\modeling_smolvlm.py", line 1148, in forward
outputs = self.model(
input_ids=input_ids,
...<11 lines>...
return_dict=return_dict,
)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\transformers\models\smolvlm\modeling_smolvlm.py", line 940, in forward
image_hidden_states = self.vision_model(
~~~~~~~~~~~~~~~~~^
pixel_values=pixel_values,
^^^^^^^^^^^^^^^^^^^^^^^^^^
patch_attention_mask=patch_attention_mask,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
).last_hidden_state
^
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\transformers\models\smolvlm\modeling_smolvlm.py", line 564, in forward
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\transformers\models\smolvlm\modeling_smolvlm.py", line 140, in forward
patch_embeds = self.patch_embedding(pixel_values)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\conv.py", line 554, in forward
return self._conv_forward(input, self.weight, self.bias)
~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Neiko\miniforge3\envs\SmolVLM2\Lib\site-packages\torch\nn\modules\conv.py", line 549, in _conv_forward
return F.conv2d(
~~~~~~~~^
input, weight, bias, self.stride, self.padding, self.dilation, self.groups
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (CUDABFloat16Type) should be the same
try
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device, dtype=torch.bfloat16)
This approach works. However, since inputs contains multiple data types and only the pixel_values dtype needs modification, the following may be more efficient:
# Convert only pixel_values to model's dtype (bfloat16)
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
Neiko2002
changed discussion status to
closed