loubnabnl's picture
loubnabnl HF Staff
Model save
c835b64 verified
|
raw
history blame
3.31 kB
metadata
base_model: bigcode/starencoder
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: stack-edu-classifier-ruby
    results: []

stack-edu-classifier-ruby

This model is a fine-tuned version of bigcode/starencoder on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3282
  • Precision: 0.4623
  • Recall: 0.3260
  • F1 Macro: 0.3536
  • Accuracy: 0.6657
  • F1 Binary Minimum3: 0.6101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy F1 Binary Minimum3
No log 0 0 4.7647 0.0010 0.1667 0.0020 0.0062 0
0.358 1.4368 1000 0.3549 0.4093 0.2953 0.3072 0.6513 0.5882
0.3559 2.8736 2000 0.3425 0.4649 0.3087 0.3294 0.6571 0.6143
0.3534 4.3103 3000 0.3391 0.4318 0.3144 0.3349 0.6586 0.6149
0.3539 5.7471 4000 0.3394 0.4219 0.3244 0.3446 0.6579 0.6298
0.3585 7.1839 5000 0.3359 0.4756 0.3106 0.3350 0.6622 0.6069
0.3476 8.6207 6000 0.3339 0.4551 0.3178 0.3415 0.6638 0.6082
0.3496 10.0575 7000 0.3307 0.4512 0.3263 0.3505 0.6656 0.6204
0.3362 11.4943 8000 0.3307 0.4657 0.3228 0.3485 0.6640 0.6178
0.3442 12.9310 9000 0.3307 0.4771 0.3248 0.3517 0.6677 0.6095
0.344 14.3678 10000 0.3287 0.4774 0.3222 0.3496 0.6660 0.6147
0.3332 15.8046 11000 0.3281 0.4678 0.3240 0.3504 0.6658 0.6168
0.3359 17.2414 12000 0.3300 0.4658 0.3203 0.3471 0.6643 0.6100
0.3306 18.6782 13000 0.3282 0.4623 0.3260 0.3536 0.6657 0.6101

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1