File size: 45,765 Bytes
3717306 af2334e 3717306 4cea89a 3717306 af2334e 3717306 1187aa4 3717306 1187aa4 3717306 4944fb9 3717306 1187aa4 3717306 1187aa4 3717306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 |
from transformers import PreTrainedModel
# from timm.models.resnet import BasicBlock, Bottleneck, ResNet
# from transmxm_model.configuration_transmxm import TransmxmConfig
import torch
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter, Sequential, ModuleList, Linear
from rdkit import Chem
from rdkit.Chem import AllChem
from transformers import PretrainedConfig
from transformers import PreTrainedModel
from transformers import AutoModel
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import remove_self_loops, add_self_loops, sort_edge_index
from torch_scatter import scatter
from torch_geometric.nn import global_add_pool, radius
from torch_sparse import SparseTensor
from transmxm_model.configuration_transmxm import TransmxmConfig
from tqdm import tqdm
import numpy as np
import pandas as pd
from typing import List
import math
import inspect
from operator import itemgetter
from collections import OrderedDict
from math import sqrt, pi as PI
from scipy.optimize import brentq
from scipy import special as sp
try:
import sympy as sym
except ImportError:
sym = None
class SmilesDataset(torch.utils.data.Dataset):
def __init__(self, smiles):
self.smiles_list = smiles
self.data_list = []
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
return self.data_list[idx]
def get_data(self, smiles):
self.smiles_list = smiles
# self.data_list = []
# bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'S': 4}
for i in range(len(self.smiles_list)):
# 将 SMILES 表示转换为 RDKit 的分子对象
# print(self.smiles_list[i])
mol = Chem.MolFromSmiles(self.smiles_list[i]) # 从smiles编码中获取结构信息
if mol is None:
print("无法创建Mol对象", self.smiles_list[i])
else:
mol3d = Chem.AddHs(
mol) # 在rdkit中,分子在默认情况下是不显示氢的,但氢原子对于真实的几何构象计算有很大的影响,所以在计算3D构象前,需要使用Chem.AddHs()方法加上氢原子
if mol3d is None:
print("无法创建mol3d对象", self.smiles_list[i])
else:
AllChem.EmbedMolecule(mol3d, randomSeed=1) # 生成3D构象
N = mol3d.GetNumAtoms()
# 获取原子坐标信息
if mol3d.GetNumConformers() > 0:
conformer = mol3d.GetConformer()
pos = conformer.GetPositions()
pos = torch.tensor(pos, dtype=torch.float)
type_idx = []
# atomic_number = []
# aromatic = []
# sp = []
# sp2 = []
# sp3 = []
for atom in mol3d.GetAtoms():
type_idx.append(types[atom.GetSymbol()])
# atomic_number.append(atom.GetAtomicNum())
# aromatic.append(1 if atom.GetIsAromatic() else 0)
# hybridization = atom.GetHybridization()
# sp.append(1 if hybridization == HybridizationType.SP else 0)
# sp2.append(1 if hybridization == HybridizationType.SP2 else 0)
# sp3.append(1 if hybridization == HybridizationType.SP3 else 0)
# z = torch.tensor(atomic_number, dtype=torch.long)
row, col, edge_type = [], [], []
for bond in mol3d.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
# edge_type += 2 * [bonds[bond.GetBondType()]]
edge_index = torch.tensor([row, col], dtype=torch.long)
# edge_type = torch.tensor(edge_type, dtype=torch.long)
# edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)
perm = (edge_index[0] * N + edge_index[1]).argsort()
edge_index = edge_index[:, perm]
# edge_type = edge_type[perm]
# edge_attr = edge_attr[perm]
#
# row, col = edge_index
# hs = (z == 1).to(torch.float)
x = torch.tensor(type_idx).to(torch.float)
# y = self.y_list[i]
data = Data(x=x, pos=pos, edge_index=edge_index, smiles=self.smiles_list[i])
self.data_list.append(data)
else:
print("无法创建comfor", self.smiles_list[i])
return self.data_list
# --------------------------------------------------------
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import math
import logging
from typing import List, Optional, Tuple
import numpy as np
from torch.nn import LayerNorm
import copy
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn, Tensor
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images. (To 1D sequences)
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask):
"""
Args:
x: torch.tensor, (batch_size, L, d)
mask: torch.tensor, (batch_size, L), with 1 as valid
Returns:
"""
assert mask is not None
x_embed = mask.cumsum(1, dtype=torch.float32) # (bsz, L)
if self.normalize:
eps = 1e-6
x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
# dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='trunc') / self.num_pos_feats)
pos_x = x_embed[:, :, None] / dim_t # (bsz, L, num_pos_feats)
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) # (bsz, L, num_pos_feats*2)
# import ipdb; ipdb.set_trace()
return pos_x # .permute(0, 2, 1) # (bsz, num_pos_feats*2, L)
def build_position_encoding(x):
N_steps = x
pos_embed = PositionEmbeddingSine(N_steps, normalize=True)
return pos_embed
class Transformer(nn.Module):
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
# TransformerEncoderLayer
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
dropout, activation, normalize_before)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, mask, att_mask, pos_embed):
"""
Args:
src: (batch_size, L, d)
mask: (batch_size, L)
query_embed: (#queries, d)
pos_embed: (batch_size, L, d) the same as src
Returns:
"""
src = src.permute(1, 0, 2) # (L, batch_size, d)
pos_embed = pos_embed.permute(1, 0, 2) # (L, batch_size, d)
memory = self.encoder(
src,
mask=att_mask,
src_key_padding_mask=mask,
pos=pos_embed
)
memory = memory.transpose(0, 1)
return memory
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self, src,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
output = src
intermediate = []
for layer in self.layers:
output = layer(output, src_mask=mask,
src_key_padding_mask=src_key_padding_mask, pos=pos)
if self.return_intermediate:
intermediate.append(output)
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
def forward_pre(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
src = src + self.dropout2(src2)
return src
def forward(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def build_transformer(x):
return Transformer(
d_model=x,
dropout=0.5,
nhead=8,
dim_feedforward=1024,
num_encoder_layers=2,
normalize_before=True,
)
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
class EMA:
def __init__(self, model, decay):
self.decay = decay
self.shadow = {}
self.original = {}
# Register model parameters
for name, param in model.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def __call__(self, model, num_updates=99999):
decay = min(self.decay, (1.0 + num_updates) / (10.0 + num_updates))
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
new_average = \
(1.0 - decay) * param.data + decay * self.shadow[name]
self.shadow[name] = new_average.clone()
def assign(self, model):
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
self.original[name] = param.data.clone()
param.data = self.shadow[name]
def resume(self, model):
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
param.data = self.original[name]
def MLP(channels):
return Sequential(*[
Sequential(Linear(channels[i - 1], channels[i]), SiLU())
for i in range(1, len(channels))])
class Res(nn.Module):
def __init__(self, dim):
super(Res, self).__init__()
self.mlp = MLP([dim, dim, dim])
def forward(self, m):
m1 = self.mlp(m)
m_out = m1 + m
return m_out
def compute_idx(pos, edge_index):
pos_i = pos[edge_index[0]]
pos_j = pos[edge_index[1]]
d_ij = torch.norm(abs(pos_j - pos_i), dim=-1, keepdim=False).unsqueeze(-1) + 1e-5
v_ji = (pos_i - pos_j) / d_ij
unique, counts = torch.unique(edge_index[0], sorted=True, return_counts=True) #Get central values
full_index = torch.arange(0, edge_index[0].size()[0]).cuda().int() #init full index
#print('full_index', full_index)
#Compute 1
repeat = torch.repeat_interleave(counts, counts)
counts_repeat1 = torch.repeat_interleave(full_index, repeat) #0,...,0,1,...,1,...
#Compute 2
split = torch.split(full_index, counts.tolist()) #split full index
index2 = list(edge_index[0].data.cpu().numpy()) #get repeat index
counts_repeat2 = torch.cat(itemgetter(*index2)(split), dim=0) #0,1,2,...,0,1,2,..
#Compute angle embeddings
v1 = v_ji[counts_repeat1.long()]
v2 = v_ji[counts_repeat2.long()]
angle = (v1*v2).sum(-1).unsqueeze(-1)
angle = torch.clamp(angle, min=-1.0, max=1.0) + 1e-6 + 1.0
return counts_repeat1.long(), counts_repeat2.long(), angle
def Jn(r, n):
return np.sqrt(np.pi / (2 * r)) * sp.jv(n + 0.5, r)
def Jn_zeros(n, k):
zerosj = np.zeros((n, k), dtype='float32')
zerosj[0] = np.arange(1, k + 1) * np.pi
points = np.arange(1, k + n) * np.pi
racines = np.zeros(k + n - 1, dtype='float32')
for i in range(1, n):
for j in range(k + n - 1 - i):
foo = brentq(Jn, points[j], points[j + 1], (i, ))
racines[j] = foo
points = racines
zerosj[i][:k] = racines[:k]
return zerosj
def spherical_bessel_formulas(n):
x = sym.symbols('x')
f = [sym.sin(x) / x]
a = sym.sin(x) / x
for i in range(1, n):
b = sym.diff(a, x) / x
f += [sym.simplify(b * (-x)**i)]
a = sym.simplify(b)
return f
def bessel_basis(n, k):
zeros = Jn_zeros(n, k)
normalizer = []
for order in range(n):
normalizer_tmp = []
for i in range(k):
normalizer_tmp += [0.5 * Jn(zeros[order, i], order + 1)**2]
normalizer_tmp = 1 / np.array(normalizer_tmp)**0.5
normalizer += [normalizer_tmp]
f = spherical_bessel_formulas(n)
x = sym.symbols('x')
bess_basis = []
for order in range(n):
bess_basis_tmp = []
for i in range(k):
bess_basis_tmp += [
sym.simplify(normalizer[order][i] *
f[order].subs(x, zeros[order, i] * x))
]
bess_basis += [bess_basis_tmp]
return bess_basis
def sph_harm_prefactor(k, m):
return ((2 * k + 1) * np.math.factorial(k - abs(m)) /
(4 * np.pi * np.math.factorial(k + abs(m))))**0.5
def associated_legendre_polynomials(k, zero_m_only=True):
z = sym.symbols('z')
P_l_m = [[0] * (j + 1) for j in range(k)]
P_l_m[0][0] = 1
if k > 0:
P_l_m[1][0] = z
for j in range(2, k):
P_l_m[j][0] = sym.simplify(((2 * j - 1) * z * P_l_m[j - 1][0] -
(j - 1) * P_l_m[j - 2][0]) / j)
if not zero_m_only:
for i in range(1, k):
P_l_m[i][i] = sym.simplify((1 - 2 * i) * P_l_m[i - 1][i - 1])
if i + 1 < k:
P_l_m[i + 1][i] = sym.simplify(
(2 * i + 1) * z * P_l_m[i][i])
for j in range(i + 2, k):
P_l_m[j][i] = sym.simplify(
((2 * j - 1) * z * P_l_m[j - 1][i] -
(i + j - 1) * P_l_m[j - 2][i]) / (j - i))
return P_l_m
def real_sph_harm(k, zero_m_only=True, spherical_coordinates=True):
if not zero_m_only:
S_m = [0]
C_m = [1]
for i in range(1, k):
x = sym.symbols('x')
y = sym.symbols('y')
S_m += [x * S_m[i - 1] + y * C_m[i - 1]]
C_m += [x * C_m[i - 1] - y * S_m[i - 1]]
P_l_m = associated_legendre_polynomials(k, zero_m_only)
if spherical_coordinates:
theta = sym.symbols('theta')
z = sym.symbols('z')
for i in range(len(P_l_m)):
for j in range(len(P_l_m[i])):
if type(P_l_m[i][j]) != int:
P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta))
if not zero_m_only:
phi = sym.symbols('phi')
for i in range(len(S_m)):
S_m[i] = S_m[i].subs(x,
sym.sin(theta) * sym.cos(phi)).subs(
y,
sym.sin(theta) * sym.sin(phi))
for i in range(len(C_m)):
C_m[i] = C_m[i].subs(x,
sym.sin(theta) * sym.cos(phi)).subs(
y,
sym.sin(theta) * sym.sin(phi))
Y_func_l_m = [['0'] * (2 * j + 1) for j in range(k)]
for i in range(k):
Y_func_l_m[i][0] = sym.simplify(sph_harm_prefactor(i, 0) * P_l_m[i][0])
if not zero_m_only:
for i in range(1, k):
for j in range(1, i + 1):
Y_func_l_m[i][j] = sym.simplify(
2**0.5 * sph_harm_prefactor(i, j) * C_m[j] * P_l_m[i][j])
for i in range(1, k):
for j in range(1, i + 1):
Y_func_l_m[i][-j] = sym.simplify(
2**0.5 * sph_harm_prefactor(i, -j) * S_m[j] * P_l_m[i][j])
return Y_func_l_m
class BesselBasisLayer(torch.nn.Module):
def __init__(self, num_radial, cutoff, envelope_exponent=6):
super(BesselBasisLayer, self).__init__()
self.cutoff = cutoff
self.envelope = Envelope(envelope_exponent)
self.freq = torch.nn.Parameter(torch.Tensor(num_radial))
self.reset_parameters()
def reset_parameters(self):
# 代替in-place操作
# torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)
# self.freq = torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)
# 计算临时张量并存储到 tmp_tensor 变量中
tmp_tensor = torch.arange(1, self.freq.numel() + 1, dtype=self.freq.dtype, device=self.freq.device)
# 使用乘法函数实现数乘并将结果保存到 self.freq 张量上
self.freq.data = torch.mul(tmp_tensor, PI)
def forward(self, dist):
dist = dist.unsqueeze(-1) / self.cutoff
return self.envelope(dist) * (self.freq * dist).sin()
class SiLU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return silu(input)
def silu(input):
return input * torch.sigmoid(input)
class Envelope(torch.nn.Module):
def __init__(self, exponent):
super(Envelope, self).__init__()
self.p = exponent
self.a = -(self.p + 1) * (self.p + 2) / 2
self.b = self.p * (self.p + 2)
self.c = -self.p * (self.p + 1) / 2
def forward(self, x):
p, a, b, c = self.p, self.a, self.b, self.c
x_pow_p0 = x.pow(p)
x_pow_p1 = x_pow_p0 * x
env_val = 1. / x + a * x_pow_p0 + b * x_pow_p1 + c * x_pow_p1 * x
zero = torch.zeros_like(x)
return torch.where(x < 1, env_val, zero)
class SphericalBasisLayer(torch.nn.Module):
def __init__(self, num_spherical, num_radial, cutoff=5.0,
envelope_exponent=5):
super(SphericalBasisLayer, self).__init__()
assert num_radial <= 64
self.num_spherical = num_spherical
self.num_radial = num_radial
self.cutoff = cutoff
self.envelope = Envelope(envelope_exponent)
bessel_forms = bessel_basis(num_spherical, num_radial)
sph_harm_forms = real_sph_harm(num_spherical)
self.sph_funcs = []
self.bessel_funcs = []
x, theta = sym.symbols('x theta')
modules = {'sin': torch.sin, 'cos': torch.cos}
for i in range(num_spherical):
if i == 0:
sph1 = sym.lambdify([theta], sph_harm_forms[i][0], modules)(0)
self.sph_funcs.append(lambda x: torch.zeros_like(x) + sph1)
else:
sph = sym.lambdify([theta], sph_harm_forms[i][0], modules)
self.sph_funcs.append(sph)
for j in range(num_radial):
bessel = sym.lambdify([x], bessel_forms[i][j], modules)
self.bessel_funcs.append(bessel)
def forward(self, dist, angle, idx_kj):
dist = dist / self.cutoff
rbf = torch.stack([f(dist) for f in self.bessel_funcs], dim=1)
rbf = self.envelope(dist).unsqueeze(-1) * rbf
cbf = torch.stack([f(angle) for f in self.sph_funcs], dim=1)
n, k = self.num_spherical, self.num_radial
out = (rbf[idx_kj].view(-1, n, k) * cbf.view(-1, n, 1)).view(-1, n * k)
return out
msg_special_args = set([
'edge_index',
'edge_index_i',
'edge_index_j',
'size',
'size_i',
'size_j',
])
aggr_special_args = set([
'index',
'dim_size',
])
update_special_args = set([])
class MessagePassing(torch.nn.Module):
r"""Base class for creating message passing layers
.. math::
\mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i,
\square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}}
\left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{i,j}\right) \right),
where :math:`\square` denotes a differentiable, permutation invariant
function, *e.g.*, sum, mean or max, and :math:`\gamma_{\mathbf{\Theta}}`
and :math:`\phi_{\mathbf{\Theta}}` denote differentiable functions such as
MLPs.
See `here <https://pytorch-geometric.readthedocs.io/en/latest/notes/
create_gnn.html>`__ for the accompanying tutorial.
Args:
aggr (string, optional): The aggregation scheme to use
(:obj:`"add"`, :obj:`"mean"` or :obj:`"max"`).
(default: :obj:`"add"`)
flow (string, optional): The flow direction of message passing
(:obj:`"source_to_target"` or :obj:`"target_to_source"`).
(default: :obj:`"source_to_target"`)
node_dim (int, optional): The axis along which to propagate.
(default: :obj:`0`)
"""
def __init__(self, aggr='add', flow='target_to_source', node_dim=0):
super(MessagePassing, self).__init__()
self.aggr = aggr
assert self.aggr in ['add', 'mean', 'max']
self.flow = flow
assert self.flow in ['source_to_target', 'target_to_source']
self.node_dim = node_dim
assert self.node_dim >= 0
self.__msg_params__ = inspect.signature(self.message).parameters
self.__msg_params__ = OrderedDict(self.__msg_params__)
self.__aggr_params__ = inspect.signature(self.aggregate).parameters
self.__aggr_params__ = OrderedDict(self.__aggr_params__)
self.__aggr_params__.popitem(last=False)
self.__update_params__ = inspect.signature(self.update).parameters
self.__update_params__ = OrderedDict(self.__update_params__)
self.__update_params__.popitem(last=False)
msg_args = set(self.__msg_params__.keys()) - msg_special_args
aggr_args = set(self.__aggr_params__.keys()) - aggr_special_args
update_args = set(self.__update_params__.keys()) - update_special_args
self.__args__ = set().union(msg_args, aggr_args, update_args)
def __set_size__(self, size, index, tensor):
if not torch.is_tensor(tensor):
pass
elif size[index] is None:
size[index] = tensor.size(self.node_dim)
elif size[index] != tensor.size(self.node_dim):
raise ValueError(
(f'Encountered node tensor with size '
f'{tensor.size(self.node_dim)} in dimension {self.node_dim}, '
f'but expected size {size[index]}.'))
def __collect__(self, edge_index, size, kwargs):
i, j = (0, 1) if self.flow == "target_to_source" else (1, 0)
ij = {"_i": i, "_j": j}
out = {}
for arg in self.__args__:
if arg[-2:] not in ij.keys():
out[arg] = kwargs.get(arg, inspect.Parameter.empty)
else:
idx = ij[arg[-2:]]
data = kwargs.get(arg[:-2], inspect.Parameter.empty)
if data is inspect.Parameter.empty:
out[arg] = data
continue
if isinstance(data, tuple) or isinstance(data, list):
assert len(data) == 2
self.__set_size__(size, 1 - idx, data[1 - idx])
data = data[idx]
if not torch.is_tensor(data):
out[arg] = data
continue
self.__set_size__(size, idx, data)
out[arg] = data.index_select(self.node_dim, edge_index[idx])
size[0] = size[1] if size[0] is None else size[0]
size[1] = size[0] if size[1] is None else size[1]
# Add special message arguments.
out['edge_index'] = edge_index
out['edge_index_i'] = edge_index[i]
out['edge_index_j'] = edge_index[j]
out['size'] = size
out['size_i'] = size[i]
out['size_j'] = size[j]
# Add special aggregate arguments.
out['index'] = out['edge_index_i']
out['dim_size'] = out['size_i']
return out
def __distribute__(self, params, kwargs):
out = {}
for key, param in params.items():
data = kwargs[key]
if data is inspect.Parameter.empty:
if param.default is inspect.Parameter.empty:
raise TypeError(f'Required parameter {key} is empty.')
data = param.default
out[key] = data
return out
def propagate(self, edge_index, size=None, **kwargs):
r"""The initial call to start propagating messages.
Args:
edge_index (Tensor): The indices of a general (sparse) assignment
matrix with shape :obj:`[N, M]` (can be directed or
undirected).
size (list or tuple, optional): The size :obj:`[N, M]` of the
assignment matrix. If set to :obj:`None`, the size will be
automatically inferred and assumed to be quadratic.
(default: :obj:`None`)
**kwargs: Any additional data which is needed to construct and
aggregate messages, and to update node embeddings.
"""
size = [None, None] if size is None else size
size = [size, size] if isinstance(size, int) else size
size = size.tolist() if torch.is_tensor(size) else size
size = list(size) if isinstance(size, tuple) else size
assert isinstance(size, list)
assert len(size) == 2
kwargs = self.__collect__(edge_index, size, kwargs)
msg_kwargs = self.__distribute__(self.__msg_params__, kwargs)
m = self.message(**msg_kwargs)
aggr_kwargs = self.__distribute__(self.__aggr_params__, kwargs)
m = self.aggregate(m, **aggr_kwargs)
update_kwargs = self.__distribute__(self.__update_params__, kwargs)
m = self.update(m, **update_kwargs)
return m
def message(self, x_j): # pragma: no cover
r"""Constructs messages to node :math:`i` in analogy to
:math:`\phi_{\mathbf{\Theta}}` for each edge in
:math:`(j,i) \in \mathcal{E}` if :obj:`flow="source_to_target"` and
:math:`(i,j) \in \mathcal{E}` if :obj:`flow="target_to_source"`.
Can take any argument which was initially passed to :meth:`propagate`.
In addition, tensors passed to :meth:`propagate` can be mapped to the
respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or
:obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`.
"""
return x_j
def aggregate(self, inputs, index, dim_size): # pragma: no cover
r"""Aggregates messages from neighbors as
:math:`\square_{j \in \mathcal{N}(i)}`.
By default, delegates call to scatter functions that support
"add", "mean" and "max" operations specified in :meth:`__init__` by
the :obj:`aggr` argument.
"""
return scatter(inputs, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)
def update(self, inputs): # pragma: no cover
r"""Updates node embeddings in analogy to
:math:`\gamma_{\mathbf{\Theta}}` for each node
:math:`i \in \mathcal{V}`.
Takes in the output of aggregation as first argument and any argument
which was initially passed to :meth:`propagate`.
"""
return inputs
class TransMXMNet(nn.Module):
def __init__(self, dim=128, n_layer=6, cutoff=5.0, num_spherical=7, num_radial=6, envelope_exponent=5):
super(TransMXMNet, self).__init__()
self.dim = dim
self.n_layer = n_layer
self.cutoff = cutoff
self.embeddings = nn.Parameter(torch.ones((5, self.dim)))
self.rbf_l = BesselBasisLayer(16, 5, envelope_exponent)
self.rbf_g = BesselBasisLayer(16, self.cutoff, envelope_exponent)
self.sbf = SphericalBasisLayer(num_spherical, num_radial, 5, envelope_exponent)
self.rbf_g_mlp = MLP([16, self.dim])
self.rbf_l_mlp = MLP([16, self.dim])
self.sbf_1_mlp = MLP([num_spherical * num_radial, self.dim])
self.sbf_2_mlp = MLP([num_spherical * num_radial, self.dim])
self.global_layers = torch.nn.ModuleList()
for layer in range(self.n_layer):
self.global_layers.append(Global_MP(self.dim))
self.local_layers = torch.nn.ModuleList()
for layer in range(self.n_layer):
self.local_layers.append(Local_MP(self.dim))
self.pos_embed = build_position_encoding(self.dim)
self.transformer = build_transformer(self.dim)
self.init()
def init(self):
stdv = math.sqrt(3)
self.embeddings.data.uniform_(-stdv, stdv)
def indices(self, edge_index, num_nodes):
row, col = edge_index
value = torch.arange(row.size(0), device=row.device)
adj_t = SparseTensor(row=col, col=row, value=value,
sparse_sizes=(num_nodes, num_nodes))
#Compute the node indices for two-hop angles
adj_t_row = adj_t[row]
num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long)
idx_i = col.repeat_interleave(num_triplets)
idx_j = row.repeat_interleave(num_triplets)
idx_k = adj_t_row.storage.col()
mask = idx_i != idx_k
idx_i_1, idx_j, idx_k = idx_i[mask], idx_j[mask], idx_k[mask]
idx_kj = adj_t_row.storage.value()[mask]
idx_ji_1 = adj_t_row.storage.row()[mask]
#Compute the node indices for one-hop angles
adj_t_col = adj_t[col]
num_pairs = adj_t_col.set_value(None).sum(dim=1).to(torch.long)
idx_i_2 = row.repeat_interleave(num_pairs)
idx_j1 = col.repeat_interleave(num_pairs)
idx_j2 = adj_t_col.storage.col()
idx_ji_2 = adj_t_col.storage.row()
idx_jj = adj_t_col.storage.value()
return idx_i_1, idx_j, idx_k, idx_kj, idx_ji_1, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2
def forward_features(self, data):
x = data.x
edge_index = data.edge_index
pos = data.pos
batch = data.batch
# Initialize node embeddings
h = torch.index_select(self.embeddings, 0, x.long()).unsqueeze(0)
data_len = torch.bincount(batch)
# 计算相邻元素差异
diff_tensor = torch.diff(data_len)
indices = torch.nonzero(diff_tensor) + 1
indices[0] = 0
att_mask = torch.zeros(len(batch), len(batch)).cuda()
att_mask[indices[0]:, indices[0]:] = 1
i = 0
for i in range(0, h.size(0) - 1):
att_mask[indices[i]:indices[i + 1], indices[i]:indices[i + 1]] = 1
att_mask[indices[i]:indices[-1], indices[i]:indices[-1]] = 1
mask = torch.ones(1, len(batch)).bool().cuda()
pos_h = self.pos_embed(h, mask).cuda()
memory = self.transformer(h, ~mask, att_mask, pos_h)
h = memory.squeeze(0)
'''局部层--------------------------------------------------------------------------
'''
# Get the edges and pairwise distances in the local layer
edge_index_l, _ = remove_self_loops(edge_index) # 移除自环后的边索引
j_l, i_l = edge_index_l
dist_l = (pos[i_l] - pos[j_l]).pow(2).sum(dim=-1).sqrt() # 两个节点之间的距离
'''全局层--------------------------------------------------------------------------
'''
# Get the edges pairwise distances in the global layer
# radius函数返回两个节点之间的距离小于cutoff的边索引
row, col = radius(pos, pos, self.cutoff, batch, batch, max_num_neighbors=500)
edge_index_g = torch.stack([row, col], dim=0)
edge_index_g, _ = remove_self_loops(edge_index_g)
j_g, i_g = edge_index_g
dist_g = (pos[i_g] - pos[j_g]).pow(2).sum(dim=-1).sqrt()
# Compute the node indices for defining the angles
idx_i_1, idx_j, idx_k, idx_kj, idx_ji, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2 = self.indices(edge_index_l, num_nodes=h.size(0))
# Compute the two-hop angles
pos_ji_1, pos_kj = pos[idx_j] - pos[idx_i_1], pos[idx_k] - pos[idx_j]
a = (pos_ji_1 * pos_kj).sum(dim=-1)
b = torch.cross(pos_ji_1, pos_kj).norm(dim=-1)
angle_1 = torch.atan2(b, a)
# Compute the one-hop angles
pos_ji_2, pos_jj = pos[idx_j1] - pos[idx_i_2], pos[idx_j2] - pos[idx_j1]
a = (pos_ji_2 * pos_jj).sum(dim=-1)
b = torch.cross(pos_ji_2, pos_jj).norm(dim=-1)
angle_2 = torch.atan2(b, a)
# Get the RBF and SBF embeddings
rbf_g = self.rbf_g(dist_g)
rbf_l = self.rbf_l(dist_l)
sbf_1 = self.sbf(dist_l, angle_1, idx_kj)
sbf_2 = self.sbf(dist_l, angle_2, idx_jj)
rbf_g = self.rbf_g_mlp(rbf_g)
rbf_l = self.rbf_l_mlp(rbf_l)
sbf_1 = self.sbf_1_mlp(sbf_1)
sbf_2 = self.sbf_2_mlp(sbf_2)
# Perform the message passing schemes
node_sum = 0
for layer in range(self.n_layer):
h = self.global_layers[layer](h, rbf_g, edge_index_g)
h, t = self.local_layers[layer](h, rbf_l, sbf_1, sbf_2, idx_kj, idx_ji, idx_jj, idx_ji_2, edge_index_l)
node_sum += t
# Readout
output = global_add_pool(node_sum, batch)
return output.view(-1)
def loss(self, pred, label):
pred, label = pred.reshape(-1), label.reshape(-1)
return F.mse_loss(pred, label)
class Global_MP(MessagePassing):
def __init__(self, dim):
super(Global_MP, self).__init__()
self.dim = dim
self.h_mlp = MLP([self.dim, self.dim])
self.res1 = Res(self.dim)
self.res2 = Res(self.dim)
self.res3 = Res(self.dim)
self.mlp = MLP([self.dim, self.dim])
self.x_edge_mlp = MLP([self.dim * 3, self.dim])
self.linear = nn.Linear(self.dim, self.dim, bias=False)
def forward(self, h, edge_attr, edge_index):
edge_index, _ = add_self_loops(edge_index, num_nodes=h.size(0))
res_h = h
# Integrate the Cross Layer Mapping inside the Global Message Passing
h = self.h_mlp(h)
# Message Passing operation
h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)
# Update function f_u
h = self.res1(h)
h = self.mlp(h) + res_h
h = self.res2(h)
h = self.res3(h)
# Message Passing operation
h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)
return h
def message(self, x_i, x_j, edge_attr, edge_index, num_nodes):
num_edge = edge_attr.size()[0]
x_edge = torch.cat((x_i[:num_edge], x_j[:num_edge], edge_attr), -1)
x_edge = self.x_edge_mlp(x_edge)
x_j = torch.cat((self.linear(edge_attr) * x_edge, x_j[num_edge:]), dim=0)
return x_j
def update(self, aggr_out):
return aggr_out
class Local_MP(torch.nn.Module):
def __init__(self, dim):
super(Local_MP, self).__init__()
self.dim = dim
self.h_mlp = MLP([self.dim, self.dim])
self.mlp_kj = MLP([3 * self.dim, self.dim])
self.mlp_ji_1 = MLP([3 * self.dim, self.dim])
self.mlp_ji_2 = MLP([self.dim, self.dim])
self.mlp_jj = MLP([self.dim, self.dim])
self.mlp_sbf1 = MLP([self.dim, self.dim, self.dim])
self.mlp_sbf2 = MLP([self.dim, self.dim, self.dim])
self.lin_rbf1 = nn.Linear(self.dim, self.dim, bias=False)
self.lin_rbf2 = nn.Linear(self.dim, self.dim, bias=False)
self.res1 = Res(self.dim)
self.res2 = Res(self.dim)
self.res3 = Res(self.dim)
self.lin_rbf_out = nn.Linear(self.dim, self.dim, bias=False)
self.h_mlp = MLP([self.dim, self.dim])
self.y_mlp = MLP([self.dim, self.dim, self.dim, self.dim])
self.y_W = nn.Linear(self.dim, 1)
def forward(self, h, rbf, sbf1, sbf2, idx_kj, idx_ji_1, idx_jj, idx_ji_2, edge_index, num_nodes=None):
res_h = h
# Integrate the Cross Layer Mapping inside the Local Message Passing
h = self.h_mlp(h)
# Message Passing 1
j, i = edge_index
m = torch.cat([h[i], h[j], rbf], dim=-1)
m_kj = self.mlp_kj(m)
m_kj = m_kj * self.lin_rbf1(rbf)
m_kj = m_kj[idx_kj] * self.mlp_sbf1(sbf1)
m_kj = scatter(m_kj, idx_ji_1, dim=0, dim_size=m.size(0), reduce='add')
m_ji_1 = self.mlp_ji_1(m)
m = m_ji_1 + m_kj
# Message Passing 2 (index jj denotes j'i in the main paper)
m_jj = self.mlp_jj(m)
m_jj = m_jj * self.lin_rbf2(rbf)
m_jj = m_jj[idx_jj] * self.mlp_sbf2(sbf2)
m_jj = scatter(m_jj, idx_ji_2, dim=0, dim_size=m.size(0), reduce='add')
m_ji_2 = self.mlp_ji_2(m)
m = m_ji_2 + m_jj
# Aggregation
m = self.lin_rbf_out(rbf) * m
h = scatter(m, i, dim=0, dim_size=h.size(0), reduce='add')
# Update function f_u
h = self.res1(h)
h = self.h_mlp(h) + res_h
h = self.res2(h)
h = self.res3(h)
# Output Module
y = self.y_mlp(h)
y = self.y_W(y)
return h, y
class TransmxmConfig(PretrainedConfig):
model_type = "transmxm"
def __init__(
self,
dim: int=128,
n_layer: int=6,
cutoff: float=5.0,
num_spherical: int=7,
num_radial: int=6,
envelope_exponent: int=5,
smiles: List[str] = None,
processor_class: str = "SmilesProcessor",
**kwargs,
):
self.dim = dim # the dimension of input feature
self.n_layer = n_layer # the number of GCN layers
self.cutoff = cutoff # the cutoff distance for neighbor searching
self.num_spherical = num_spherical # the number of spherical harmonics
self.num_radial = num_radial # the number of radial basis
self.envelope_exponent = envelope_exponent # the envelope exponent
self.smiles = smiles # process smiles
self.processor_class = processor_class
super().__init__(**kwargs)
class TransmxmModel(PreTrainedModel):
config_class = TransmxmConfig
def __init__(self, config):
super().__init__(config)
self.backbone = TransMXMNet(
dim=config.dim,
n_layer=config.n_layer,
cutoff=config.cutoff,
num_spherical=config.num_spherical,
num_radial=config.num_radial,
envelope_exponent=config.envelope_exponent,
)
self.process = SmilesDataset(
smiles=config.smiles,
)
self.model = None
self.dataset = None
self.output = None
self.data_loader = None
self.pred_data = None
def forward(self, tensor):
return self.backbone.forward_features(tensor)
def SmilesProcessor(self, smiles):
return self.process.get_data(smiles)
def predict_smiles(self, smiles, device: str='cpu', result_dir: str='./', **kwargs):
batch_size = kwargs.pop('batch_size', 1)
shuffle = kwargs.pop('shuffle', False)
drop_last = kwargs.pop('drop_last', False)
num_workers = kwargs.pop('num_workers', 0)
self.model = AutoModel.from_pretrained("Huhujingjing/custom-transmxm", trust_remote_code=True).to(device)
self.model.eval()
self.dataset = self.process.get_data(smiles)
self.output = ""
self.output += ("predicted samples num: {}\n".format(len(self.dataset)))
self.output +=("predicted samples:{}\n".format(self.dataset[0]))
self.data_loader = DataLoader(self.dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last,
num_workers=num_workers
)
self.pred_data = {
'smiles': [],
'pred': []
}
for batch in tqdm(self.data_loader):
batch = batch.to(device)
with torch.no_grad():
self.pred_data['smiles'] += batch['smiles']
self.pred_data['pred'] += self.model(batch).cpu().tolist()
pred = torch.tensor(self.pred_data['pred']).reshape(-1)
if device == 'cuda':
pred = pred.cpu().tolist()
self.pred_data['pred'] = pred
pred_df = pd.DataFrame(self.pred_data)
pred_df['pred'] = pred_df['pred'].apply(lambda x: round(x, 2))
self.output +=('-' * 40 + '\n'+'predicted result: \n'+'{}\n'.format(pred_df))
self.output +=('-' * 40)
pred_df.to_csv(os.path.join(result_dir, 'prediction.csv'), index=False)
self.output +=('\nsave predicted result to {}\n'.format(os.path.join(result_dir, 'prediction.csv')))
return self.output
if __name__ == "__main__":
transmxm_config = TransmxmConfig.from_pretrained("custom-transmxm")
transmxmd = TransmxmModel(transmxm_config)
transmxmd.model.load_state_dict(torch.load(r'G:\Trans_MXM\runs\model.pt'))
transmxmd.save_pretrained("custom-transmxm")
|