File size: 45,765 Bytes
3717306
af2334e
 
3717306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cea89a
3717306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af2334e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3717306
 
 
 
 
 
 
 
 
1187aa4
3717306
 
 
 
 
 
 
 
 
 
 
1187aa4
3717306
 
 
 
 
 
4944fb9
3717306
 
 
 
 
 
 
 
 
 
 
 
 
1187aa4
 
3717306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187aa4
3717306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
from transformers import PreTrainedModel
# from timm.models.resnet import BasicBlock, Bottleneck, ResNet
# from transmxm_model.configuration_transmxm import TransmxmConfig
import torch

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter, Sequential, ModuleList, Linear

from rdkit import Chem
from rdkit.Chem import AllChem

from transformers import PretrainedConfig
from transformers import PreTrainedModel
from transformers import AutoModel

from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import remove_self_loops, add_self_loops, sort_edge_index
from torch_scatter import scatter
from torch_geometric.nn import global_add_pool, radius
from torch_sparse import SparseTensor

from transmxm_model.configuration_transmxm import TransmxmConfig

from tqdm import tqdm
import numpy as np
import pandas as pd
from typing import List
import math
import inspect
from operator import itemgetter
from collections import OrderedDict
from math import sqrt, pi as PI
from scipy.optimize import brentq
from scipy import special as sp

try:
    import sympy as sym
except ImportError:
    sym = None



class SmilesDataset(torch.utils.data.Dataset):
    def __init__(self, smiles):
        self.smiles_list = smiles
        self.data_list = []


    def __len__(self):
        return len(self.data_list)

    def __getitem__(self, idx):
        return self.data_list[idx]

    def get_data(self, smiles):
        self.smiles_list = smiles
        # self.data_list = []
        # bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
        types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'S': 4}

        for i in range(len(self.smiles_list)):
            # 将 SMILES 表示转换为 RDKit 的分子对象
            # print(self.smiles_list[i])
            mol = Chem.MolFromSmiles(self.smiles_list[i])  # 从smiles编码中获取结构信息
            if mol is None:
                print("无法创建Mol对象", self.smiles_list[i])
            else:

                mol3d = Chem.AddHs(
                    mol)  # 在rdkit中,分子在默认情况下是不显示氢的,但氢原子对于真实的几何构象计算有很大的影响,所以在计算3D构象前,需要使用Chem.AddHs()方法加上氢原子
                if mol3d is None:
                    print("无法创建mol3d对象", self.smiles_list[i])
                else:
                    AllChem.EmbedMolecule(mol3d, randomSeed=1)  # 生成3D构象

                    N = mol3d.GetNumAtoms()
                    # 获取原子坐标信息
                    if mol3d.GetNumConformers() > 0:
                        conformer = mol3d.GetConformer()
                        pos = conformer.GetPositions()
                        pos = torch.tensor(pos, dtype=torch.float)

                        type_idx = []
                        # atomic_number = []
                        # aromatic = []
                        # sp = []
                        # sp2 = []
                        # sp3 = []
                        for atom in mol3d.GetAtoms():
                            type_idx.append(types[atom.GetSymbol()])
                            # atomic_number.append(atom.GetAtomicNum())
                            # aromatic.append(1 if atom.GetIsAromatic() else 0)
                            # hybridization = atom.GetHybridization()
                            # sp.append(1 if hybridization == HybridizationType.SP else 0)
                            # sp2.append(1 if hybridization == HybridizationType.SP2 else 0)
                            # sp3.append(1 if hybridization == HybridizationType.SP3 else 0)

                        # z = torch.tensor(atomic_number, dtype=torch.long)

                        row, col, edge_type = [], [], []
                        for bond in mol3d.GetBonds():
                            start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
                            row += [start, end]
                            col += [end, start]
                            # edge_type += 2 * [bonds[bond.GetBondType()]]

                        edge_index = torch.tensor([row, col], dtype=torch.long)
                        # edge_type = torch.tensor(edge_type, dtype=torch.long)
                        # edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)

                        perm = (edge_index[0] * N + edge_index[1]).argsort()
                        edge_index = edge_index[:, perm]
                        # edge_type = edge_type[perm]
                        # edge_attr = edge_attr[perm]
                        #
                        # row, col = edge_index
                        # hs = (z == 1).to(torch.float)

                        x = torch.tensor(type_idx).to(torch.float)

                        # y = self.y_list[i]

                        data = Data(x=x, pos=pos, edge_index=edge_index, smiles=self.smiles_list[i])

                        self.data_list.append(data)
                    else:
                        print("无法创建comfor", self.smiles_list[i])
        return self.data_list


# --------------------------------------------------------
# WavLM: Large-Scale Self-Supervised  Pre-training  for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import math
import logging
from typing import List, Optional, Tuple

import numpy as np
from torch.nn import LayerNorm
import copy
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn, Tensor


class PositionEmbeddingSine(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images. (To 1D sequences)
    """
    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, x, mask):
        """
        Args:
            x: torch.tensor, (batch_size, L, d)
            mask: torch.tensor, (batch_size, L), with 1 as valid

        Returns:

        """
        assert mask is not None
        x_embed = mask.cumsum(1, dtype=torch.float32)  # (bsz, L)
        if self.normalize:
            eps = 1e-6
            x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        # dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
        dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='trunc') / self.num_pos_feats)
        pos_x = x_embed[:, :, None] / dim_t  # (bsz, L, num_pos_feats)
        pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)  # (bsz, L, num_pos_feats*2)
        # import ipdb; ipdb.set_trace()
        return pos_x  # .permute(0, 2, 1)  # (bsz, num_pos_feats*2, L)

def build_position_encoding(x):
    N_steps = x
    pos_embed = PositionEmbeddingSine(N_steps, normalize=True)

    return pos_embed


class Transformer(nn.Module):

    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()

        # TransformerEncoderLayer
        encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before)
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src, mask, att_mask, pos_embed):
        """
        Args:
            src: (batch_size, L, d)
            mask: (batch_size, L)
            query_embed: (#queries, d)
            pos_embed: (batch_size, L, d) the same as src

        Returns:

        """
        src = src.permute(1, 0, 2)  # (L, batch_size, d)
        pos_embed = pos_embed.permute(1, 0, 2)   # (L, batch_size, d)

        memory = self.encoder(
            src,
            mask=att_mask,
            src_key_padding_mask=mask,
            pos=pos_embed
        )

        memory = memory.transpose(0, 1)
        return memory


class TransformerEncoder(nn.Module):

    def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self, src,
                mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        output = src

        intermediate = []

        for layer in self.layers:
            output = layer(output, src_mask=mask,
                           src_key_padding_mask=src_key_padding_mask, pos=pos)
            if self.return_intermediate:
                intermediate.append(output)

        if self.norm is not None:
            output = self.norm(output)

        if self.return_intermediate:
            return torch.stack(intermediate)

        return output


class TransformerEncoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos)
        src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

    def forward_pre(self, src,
                    src_mask: Optional[Tensor] = None,
                    src_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None):
        src2 = self.norm1(src)
        q = k = self.with_pos_embed(src2, pos)
        src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src2 = self.norm2(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
        src = src + self.dropout2(src2)
        return src

    def forward(self, src,
                src_mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos)


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def build_transformer(x):
    return Transformer(
        d_model=x,
        dropout=0.5,
        nhead=8,
        dim_feedforward=1024,
        num_encoder_layers=2,
        normalize_before=True,
    )


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")



class EMA:
    def __init__(self, model, decay):
        self.decay = decay
        self.shadow = {}
        self.original = {}

        # Register model parameters
        for name, param in model.named_parameters():
            if param.requires_grad:
                self.shadow[name] = param.data.clone()

    def __call__(self, model, num_updates=99999):
        decay = min(self.decay, (1.0 + num_updates) / (10.0 + num_updates))
        for name, param in model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                new_average = \
                    (1.0 - decay) * param.data + decay * self.shadow[name]
                self.shadow[name] = new_average.clone()

    def assign(self, model):
        for name, param in model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                self.original[name] = param.data.clone()
                param.data = self.shadow[name]

    def resume(self, model):
        for name, param in model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                param.data = self.original[name]


def MLP(channels):
    return Sequential(*[
        Sequential(Linear(channels[i - 1], channels[i]), SiLU())
        for i in range(1, len(channels))])


class Res(nn.Module):
    def __init__(self, dim):
        super(Res, self).__init__()

        self.mlp = MLP([dim, dim, dim])

    def forward(self, m):
        m1 = self.mlp(m)
        m_out = m1 + m
        return m_out


def compute_idx(pos, edge_index):

    pos_i = pos[edge_index[0]]
    pos_j = pos[edge_index[1]]

    d_ij = torch.norm(abs(pos_j - pos_i), dim=-1, keepdim=False).unsqueeze(-1) + 1e-5
    v_ji = (pos_i - pos_j) / d_ij

    unique, counts = torch.unique(edge_index[0], sorted=True, return_counts=True) #Get central values
    full_index = torch.arange(0, edge_index[0].size()[0]).cuda().int() #init full index
    #print('full_index', full_index)

    #Compute 1
    repeat = torch.repeat_interleave(counts, counts)
    counts_repeat1 = torch.repeat_interleave(full_index, repeat) #0,...,0,1,...,1,...

    #Compute 2
    split = torch.split(full_index, counts.tolist()) #split full index
    index2 = list(edge_index[0].data.cpu().numpy()) #get repeat index
    counts_repeat2 = torch.cat(itemgetter(*index2)(split), dim=0) #0,1,2,...,0,1,2,..

    #Compute angle embeddings
    v1 = v_ji[counts_repeat1.long()]
    v2 = v_ji[counts_repeat2.long()]

    angle = (v1*v2).sum(-1).unsqueeze(-1)
    angle = torch.clamp(angle, min=-1.0, max=1.0) + 1e-6 + 1.0

    return counts_repeat1.long(), counts_repeat2.long(), angle


def Jn(r, n):
    return np.sqrt(np.pi / (2 * r)) * sp.jv(n + 0.5, r)


def Jn_zeros(n, k):
    zerosj = np.zeros((n, k), dtype='float32')
    zerosj[0] = np.arange(1, k + 1) * np.pi
    points = np.arange(1, k + n) * np.pi
    racines = np.zeros(k + n - 1, dtype='float32')
    for i in range(1, n):
        for j in range(k + n - 1 - i):
            foo = brentq(Jn, points[j], points[j + 1], (i, ))
            racines[j] = foo
        points = racines
        zerosj[i][:k] = racines[:k]

    return zerosj


def spherical_bessel_formulas(n):
    x = sym.symbols('x')

    f = [sym.sin(x) / x]
    a = sym.sin(x) / x
    for i in range(1, n):
        b = sym.diff(a, x) / x
        f += [sym.simplify(b * (-x)**i)]
        a = sym.simplify(b)
    return f


def bessel_basis(n, k):
    zeros = Jn_zeros(n, k)
    normalizer = []
    for order in range(n):
        normalizer_tmp = []
        for i in range(k):
            normalizer_tmp += [0.5 * Jn(zeros[order, i], order + 1)**2]
        normalizer_tmp = 1 / np.array(normalizer_tmp)**0.5
        normalizer += [normalizer_tmp]

    f = spherical_bessel_formulas(n)
    x = sym.symbols('x')
    bess_basis = []
    for order in range(n):
        bess_basis_tmp = []
        for i in range(k):
            bess_basis_tmp += [
                sym.simplify(normalizer[order][i] *
                             f[order].subs(x, zeros[order, i] * x))
            ]
        bess_basis += [bess_basis_tmp]
    return bess_basis


def sph_harm_prefactor(k, m):
    return ((2 * k + 1) * np.math.factorial(k - abs(m)) /
            (4 * np.pi * np.math.factorial(k + abs(m))))**0.5


def associated_legendre_polynomials(k, zero_m_only=True):
    z = sym.symbols('z')
    P_l_m = [[0] * (j + 1) for j in range(k)]

    P_l_m[0][0] = 1
    if k > 0:
        P_l_m[1][0] = z

        for j in range(2, k):
            P_l_m[j][0] = sym.simplify(((2 * j - 1) * z * P_l_m[j - 1][0] -
                                        (j - 1) * P_l_m[j - 2][0]) / j)
        if not zero_m_only:
            for i in range(1, k):
                P_l_m[i][i] = sym.simplify((1 - 2 * i) * P_l_m[i - 1][i - 1])
                if i + 1 < k:
                    P_l_m[i + 1][i] = sym.simplify(
                        (2 * i + 1) * z * P_l_m[i][i])
                for j in range(i + 2, k):
                    P_l_m[j][i] = sym.simplify(
                        ((2 * j - 1) * z * P_l_m[j - 1][i] -
                         (i + j - 1) * P_l_m[j - 2][i]) / (j - i))

    return P_l_m


def real_sph_harm(k, zero_m_only=True, spherical_coordinates=True):
    if not zero_m_only:
        S_m = [0]
        C_m = [1]
        for i in range(1, k):
            x = sym.symbols('x')
            y = sym.symbols('y')
            S_m += [x * S_m[i - 1] + y * C_m[i - 1]]
            C_m += [x * C_m[i - 1] - y * S_m[i - 1]]

    P_l_m = associated_legendre_polynomials(k, zero_m_only)
    if spherical_coordinates:
        theta = sym.symbols('theta')
        z = sym.symbols('z')
        for i in range(len(P_l_m)):
            for j in range(len(P_l_m[i])):
                if type(P_l_m[i][j]) != int:
                    P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta))
        if not zero_m_only:
            phi = sym.symbols('phi')
            for i in range(len(S_m)):
                S_m[i] = S_m[i].subs(x,
                                     sym.sin(theta) * sym.cos(phi)).subs(
                                         y,
                                         sym.sin(theta) * sym.sin(phi))
            for i in range(len(C_m)):
                C_m[i] = C_m[i].subs(x,
                                     sym.sin(theta) * sym.cos(phi)).subs(
                                         y,
                                         sym.sin(theta) * sym.sin(phi))

    Y_func_l_m = [['0'] * (2 * j + 1) for j in range(k)]
    for i in range(k):
        Y_func_l_m[i][0] = sym.simplify(sph_harm_prefactor(i, 0) * P_l_m[i][0])

    if not zero_m_only:
        for i in range(1, k):
            for j in range(1, i + 1):
                Y_func_l_m[i][j] = sym.simplify(
                    2**0.5 * sph_harm_prefactor(i, j) * C_m[j] * P_l_m[i][j])
        for i in range(1, k):
            for j in range(1, i + 1):
                Y_func_l_m[i][-j] = sym.simplify(
                    2**0.5 * sph_harm_prefactor(i, -j) * S_m[j] * P_l_m[i][j])

    return Y_func_l_m


class BesselBasisLayer(torch.nn.Module):
    def __init__(self, num_radial, cutoff, envelope_exponent=6):
        super(BesselBasisLayer, self).__init__()
        self.cutoff = cutoff
        self.envelope = Envelope(envelope_exponent)

        self.freq = torch.nn.Parameter(torch.Tensor(num_radial))

        self.reset_parameters()

    def reset_parameters(self):
        # 代替in-place操作
        # torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)
        # self.freq = torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)

        # 计算临时张量并存储到 tmp_tensor 变量中
        tmp_tensor = torch.arange(1, self.freq.numel() + 1, dtype=self.freq.dtype, device=self.freq.device)

        # 使用乘法函数实现数乘并将结果保存到 self.freq 张量上
        self.freq.data = torch.mul(tmp_tensor, PI)

    def forward(self, dist):
        dist = dist.unsqueeze(-1) / self.cutoff
        return self.envelope(dist) * (self.freq * dist).sin()


class SiLU(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return silu(input)


def silu(input):
    return input * torch.sigmoid(input)


class Envelope(torch.nn.Module):
    def __init__(self, exponent):
        super(Envelope, self).__init__()
        self.p = exponent
        self.a = -(self.p + 1) * (self.p + 2) / 2
        self.b = self.p * (self.p + 2)
        self.c = -self.p * (self.p + 1) / 2

    def forward(self, x):
        p, a, b, c = self.p, self.a, self.b, self.c
        x_pow_p0 = x.pow(p)
        x_pow_p1 = x_pow_p0 * x
        env_val = 1. / x + a * x_pow_p0 + b * x_pow_p1 + c * x_pow_p1 * x

        zero = torch.zeros_like(x)
        return torch.where(x < 1, env_val, zero)


class SphericalBasisLayer(torch.nn.Module):
    def __init__(self, num_spherical, num_radial, cutoff=5.0,
                 envelope_exponent=5):
        super(SphericalBasisLayer, self).__init__()
        assert num_radial <= 64
        self.num_spherical = num_spherical
        self.num_radial = num_radial
        self.cutoff = cutoff
        self.envelope = Envelope(envelope_exponent)

        bessel_forms = bessel_basis(num_spherical, num_radial)
        sph_harm_forms = real_sph_harm(num_spherical)
        self.sph_funcs = []
        self.bessel_funcs = []

        x, theta = sym.symbols('x theta')
        modules = {'sin': torch.sin, 'cos': torch.cos}
        for i in range(num_spherical):
            if i == 0:
                sph1 = sym.lambdify([theta], sph_harm_forms[i][0], modules)(0)
                self.sph_funcs.append(lambda x: torch.zeros_like(x) + sph1)
            else:
                sph = sym.lambdify([theta], sph_harm_forms[i][0], modules)
                self.sph_funcs.append(sph)
            for j in range(num_radial):
                bessel = sym.lambdify([x], bessel_forms[i][j], modules)
                self.bessel_funcs.append(bessel)

    def forward(self, dist, angle, idx_kj):
        dist = dist / self.cutoff
        rbf = torch.stack([f(dist) for f in self.bessel_funcs], dim=1)
        rbf = self.envelope(dist).unsqueeze(-1) * rbf

        cbf = torch.stack([f(angle) for f in self.sph_funcs], dim=1)

        n, k = self.num_spherical, self.num_radial
        out = (rbf[idx_kj].view(-1, n, k) * cbf.view(-1, n, 1)).view(-1, n * k)
        return out



msg_special_args = set([
    'edge_index',
    'edge_index_i',
    'edge_index_j',
    'size',
    'size_i',
    'size_j',
])

aggr_special_args = set([
    'index',
    'dim_size',
])

update_special_args = set([])


class MessagePassing(torch.nn.Module):
    r"""Base class for creating message passing layers

    .. math::
        \mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i,
        \square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}}
        \left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{i,j}\right) \right),

    where :math:`\square` denotes a differentiable, permutation invariant
    function, *e.g.*, sum, mean or max, and :math:`\gamma_{\mathbf{\Theta}}`
    and :math:`\phi_{\mathbf{\Theta}}` denote differentiable functions such as
    MLPs.
    See `here <https://pytorch-geometric.readthedocs.io/en/latest/notes/
    create_gnn.html>`__ for the accompanying tutorial.

    Args:
        aggr (string, optional): The aggregation scheme to use
            (:obj:`"add"`, :obj:`"mean"` or :obj:`"max"`).
            (default: :obj:`"add"`)
        flow (string, optional): The flow direction of message passing
            (:obj:`"source_to_target"` or :obj:`"target_to_source"`).
            (default: :obj:`"source_to_target"`)
        node_dim (int, optional): The axis along which to propagate.
            (default: :obj:`0`)
    """
    def __init__(self, aggr='add', flow='target_to_source', node_dim=0):
        super(MessagePassing, self).__init__()

        self.aggr = aggr
        assert self.aggr in ['add', 'mean', 'max']

        self.flow = flow
        assert self.flow in ['source_to_target', 'target_to_source']

        self.node_dim = node_dim
        assert self.node_dim >= 0

        self.__msg_params__ = inspect.signature(self.message).parameters
        self.__msg_params__ = OrderedDict(self.__msg_params__)

        self.__aggr_params__ = inspect.signature(self.aggregate).parameters
        self.__aggr_params__ = OrderedDict(self.__aggr_params__)
        self.__aggr_params__.popitem(last=False)

        self.__update_params__ = inspect.signature(self.update).parameters
        self.__update_params__ = OrderedDict(self.__update_params__)
        self.__update_params__.popitem(last=False)

        msg_args = set(self.__msg_params__.keys()) - msg_special_args
        aggr_args = set(self.__aggr_params__.keys()) - aggr_special_args
        update_args = set(self.__update_params__.keys()) - update_special_args

        self.__args__ = set().union(msg_args, aggr_args, update_args)

    def __set_size__(self, size, index, tensor):
        if not torch.is_tensor(tensor):
            pass
        elif size[index] is None:
            size[index] = tensor.size(self.node_dim)
        elif size[index] != tensor.size(self.node_dim):
            raise ValueError(
                (f'Encountered node tensor with size '
                 f'{tensor.size(self.node_dim)} in dimension {self.node_dim}, '
                 f'but expected size {size[index]}.'))

    def __collect__(self, edge_index, size, kwargs):
        i, j = (0, 1) if self.flow == "target_to_source" else (1, 0)
        ij = {"_i": i, "_j": j}

        out = {}
        for arg in self.__args__:
            if arg[-2:] not in ij.keys():
                out[arg] = kwargs.get(arg, inspect.Parameter.empty)
            else:
                idx = ij[arg[-2:]]
                data = kwargs.get(arg[:-2], inspect.Parameter.empty)

                if data is inspect.Parameter.empty:
                    out[arg] = data
                    continue

                if isinstance(data, tuple) or isinstance(data, list):
                    assert len(data) == 2
                    self.__set_size__(size, 1 - idx, data[1 - idx])
                    data = data[idx]

                if not torch.is_tensor(data):
                    out[arg] = data
                    continue

                self.__set_size__(size, idx, data)
                out[arg] = data.index_select(self.node_dim, edge_index[idx])

        size[0] = size[1] if size[0] is None else size[0]
        size[1] = size[0] if size[1] is None else size[1]

        # Add special message arguments.
        out['edge_index'] = edge_index
        out['edge_index_i'] = edge_index[i]
        out['edge_index_j'] = edge_index[j]
        out['size'] = size
        out['size_i'] = size[i]
        out['size_j'] = size[j]

        # Add special aggregate arguments.
        out['index'] = out['edge_index_i']
        out['dim_size'] = out['size_i']

        return out

    def __distribute__(self, params, kwargs):
        out = {}
        for key, param in params.items():
            data = kwargs[key]
            if data is inspect.Parameter.empty:
                if param.default is inspect.Parameter.empty:
                    raise TypeError(f'Required parameter {key} is empty.')
                data = param.default
            out[key] = data
        return out

    def propagate(self, edge_index, size=None, **kwargs):
        r"""The initial call to start propagating messages.

        Args:
            edge_index (Tensor): The indices of a general (sparse) assignment
                matrix with shape :obj:`[N, M]` (can be directed or
                undirected).
            size (list or tuple, optional): The size :obj:`[N, M]` of the
                assignment matrix. If set to :obj:`None`, the size will be
                automatically inferred and assumed to be quadratic.
                (default: :obj:`None`)
            **kwargs: Any additional data which is needed to construct and
                aggregate messages, and to update node embeddings.
        """

        size = [None, None] if size is None else size
        size = [size, size] if isinstance(size, int) else size
        size = size.tolist() if torch.is_tensor(size) else size
        size = list(size) if isinstance(size, tuple) else size
        assert isinstance(size, list)
        assert len(size) == 2

        kwargs = self.__collect__(edge_index, size, kwargs)

        msg_kwargs = self.__distribute__(self.__msg_params__, kwargs)

        m = self.message(**msg_kwargs)
        aggr_kwargs = self.__distribute__(self.__aggr_params__, kwargs)
        m = self.aggregate(m, **aggr_kwargs)

        update_kwargs = self.__distribute__(self.__update_params__, kwargs)
        m = self.update(m, **update_kwargs)

        return m

    def message(self, x_j):  # pragma: no cover
        r"""Constructs messages to node :math:`i` in analogy to
        :math:`\phi_{\mathbf{\Theta}}` for each edge in
        :math:`(j,i) \in \mathcal{E}` if :obj:`flow="source_to_target"` and
        :math:`(i,j) \in \mathcal{E}` if :obj:`flow="target_to_source"`.
        Can take any argument which was initially passed to :meth:`propagate`.
        In addition, tensors passed to :meth:`propagate` can be mapped to the
        respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or
        :obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`.
        """

        return x_j

    def aggregate(self, inputs, index, dim_size):  # pragma: no cover
        r"""Aggregates messages from neighbors as
        :math:`\square_{j \in \mathcal{N}(i)}`.

        By default, delegates call to scatter functions that support
        "add", "mean" and "max" operations specified in :meth:`__init__` by
        the :obj:`aggr` argument.
        """

        return scatter(inputs, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)

    def update(self, inputs):  # pragma: no cover
        r"""Updates node embeddings in analogy to
        :math:`\gamma_{\mathbf{\Theta}}` for each node
        :math:`i \in \mathcal{V}`.
        Takes in the output of aggregation as first argument and any argument
        which was initially passed to :meth:`propagate`.
        """

        return inputs

class TransMXMNet(nn.Module):
    def __init__(self, dim=128, n_layer=6, cutoff=5.0, num_spherical=7, num_radial=6, envelope_exponent=5):
        super(TransMXMNet, self).__init__()

        self.dim = dim
        self.n_layer = n_layer
        self.cutoff = cutoff

        self.embeddings = nn.Parameter(torch.ones((5, self.dim)))

        self.rbf_l = BesselBasisLayer(16, 5, envelope_exponent)
        self.rbf_g = BesselBasisLayer(16, self.cutoff, envelope_exponent)
        self.sbf = SphericalBasisLayer(num_spherical, num_radial, 5, envelope_exponent)

        self.rbf_g_mlp = MLP([16, self.dim])
        self.rbf_l_mlp = MLP([16, self.dim])

        self.sbf_1_mlp = MLP([num_spherical * num_radial, self.dim])
        self.sbf_2_mlp = MLP([num_spherical * num_radial, self.dim])

        self.global_layers = torch.nn.ModuleList()
        for layer in range(self.n_layer):
            self.global_layers.append(Global_MP(self.dim))

        self.local_layers = torch.nn.ModuleList()
        for layer in range(self.n_layer):
            self.local_layers.append(Local_MP(self.dim))

        self.pos_embed = build_position_encoding(self.dim)
        self.transformer = build_transformer(self.dim)

        self.init()

    def init(self):
        stdv = math.sqrt(3)
        self.embeddings.data.uniform_(-stdv, stdv)

    def indices(self, edge_index, num_nodes):
        row, col = edge_index

        value = torch.arange(row.size(0), device=row.device)
        adj_t = SparseTensor(row=col, col=row, value=value,
                             sparse_sizes=(num_nodes, num_nodes))

        #Compute the node indices for two-hop angles
        adj_t_row = adj_t[row]
        num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long)

        idx_i = col.repeat_interleave(num_triplets)
        idx_j = row.repeat_interleave(num_triplets)
        idx_k = adj_t_row.storage.col()
        mask = idx_i != idx_k
        idx_i_1, idx_j, idx_k = idx_i[mask], idx_j[mask], idx_k[mask]

        idx_kj = adj_t_row.storage.value()[mask]
        idx_ji_1 = adj_t_row.storage.row()[mask]

        #Compute the node indices for one-hop angles
        adj_t_col = adj_t[col]

        num_pairs = adj_t_col.set_value(None).sum(dim=1).to(torch.long)
        idx_i_2 = row.repeat_interleave(num_pairs)
        idx_j1 = col.repeat_interleave(num_pairs)
        idx_j2 = adj_t_col.storage.col()

        idx_ji_2 = adj_t_col.storage.row()
        idx_jj = adj_t_col.storage.value()

        return idx_i_1, idx_j, idx_k, idx_kj, idx_ji_1, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2


    def forward_features(self, data):
        x = data.x
        edge_index = data.edge_index
        pos = data.pos
        batch = data.batch
        # Initialize node embeddings
        h = torch.index_select(self.embeddings, 0, x.long()).unsqueeze(0)
        data_len = torch.bincount(batch)
        # 计算相邻元素差异
        diff_tensor = torch.diff(data_len)
        indices = torch.nonzero(diff_tensor) + 1
        indices[0] = 0

        att_mask = torch.zeros(len(batch), len(batch)).cuda()

        att_mask[indices[0]:, indices[0]:] = 1
        i = 0
        for i in range(0, h.size(0) - 1):
            att_mask[indices[i]:indices[i + 1], indices[i]:indices[i + 1]] = 1
        att_mask[indices[i]:indices[-1], indices[i]:indices[-1]] = 1

        mask = torch.ones(1, len(batch)).bool().cuda()

        pos_h = self.pos_embed(h, mask).cuda()
        memory = self.transformer(h, ~mask, att_mask, pos_h)
        h = memory.squeeze(0)

        '''局部层--------------------------------------------------------------------------
        '''
        # Get the edges and pairwise distances in the local layer
        edge_index_l, _ = remove_self_loops(edge_index)  # 移除自环后的边索引
        j_l, i_l = edge_index_l
        dist_l = (pos[i_l] - pos[j_l]).pow(2).sum(dim=-1).sqrt()  # 两个节点之间的距离

        '''全局层--------------------------------------------------------------------------
        '''
        # Get the edges pairwise distances in the global layer
        # radius函数返回两个节点之间的距离小于cutoff的边索引
        row, col = radius(pos, pos, self.cutoff, batch, batch, max_num_neighbors=500)
        edge_index_g = torch.stack([row, col], dim=0)
        edge_index_g, _ = remove_self_loops(edge_index_g)
        j_g, i_g = edge_index_g
        dist_g = (pos[i_g] - pos[j_g]).pow(2).sum(dim=-1).sqrt()

        # Compute the node indices for defining the angles
        idx_i_1, idx_j, idx_k, idx_kj, idx_ji, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2 = self.indices(edge_index_l, num_nodes=h.size(0))

        # Compute the two-hop angles
        pos_ji_1, pos_kj = pos[idx_j] - pos[idx_i_1], pos[idx_k] - pos[idx_j]
        a = (pos_ji_1 * pos_kj).sum(dim=-1)
        b = torch.cross(pos_ji_1, pos_kj).norm(dim=-1)
        angle_1 = torch.atan2(b, a)

        # Compute the one-hop angles
        pos_ji_2, pos_jj = pos[idx_j1] - pos[idx_i_2], pos[idx_j2] - pos[idx_j1]
        a = (pos_ji_2 * pos_jj).sum(dim=-1)
        b = torch.cross(pos_ji_2, pos_jj).norm(dim=-1)
        angle_2 = torch.atan2(b, a)

        # Get the RBF and SBF embeddings
        rbf_g = self.rbf_g(dist_g)
        rbf_l = self.rbf_l(dist_l)
        sbf_1 = self.sbf(dist_l, angle_1, idx_kj)
        sbf_2 = self.sbf(dist_l, angle_2, idx_jj)

        rbf_g = self.rbf_g_mlp(rbf_g)
        rbf_l = self.rbf_l_mlp(rbf_l)
        sbf_1 = self.sbf_1_mlp(sbf_1)
        sbf_2 = self.sbf_2_mlp(sbf_2)

        # Perform the message passing schemes
        node_sum = 0

        for layer in range(self.n_layer):
            h = self.global_layers[layer](h, rbf_g, edge_index_g)
            h, t = self.local_layers[layer](h, rbf_l, sbf_1, sbf_2, idx_kj, idx_ji, idx_jj, idx_ji_2, edge_index_l)
            node_sum += t

        # Readout
        output = global_add_pool(node_sum, batch)
        return output.view(-1)

    def loss(self, pred, label):
        pred, label = pred.reshape(-1), label.reshape(-1)
        return F.mse_loss(pred, label)


class Global_MP(MessagePassing):

    def __init__(self, dim):
        super(Global_MP, self).__init__()
        self.dim = dim

        self.h_mlp = MLP([self.dim, self.dim])

        self.res1 = Res(self.dim)
        self.res2 = Res(self.dim)
        self.res3 = Res(self.dim)
        self.mlp = MLP([self.dim, self.dim])

        self.x_edge_mlp = MLP([self.dim * 3, self.dim])
        self.linear = nn.Linear(self.dim, self.dim, bias=False)

    def forward(self, h, edge_attr, edge_index):
        edge_index, _ = add_self_loops(edge_index, num_nodes=h.size(0))

        res_h = h

        # Integrate the Cross Layer Mapping inside the Global Message Passing
        h = self.h_mlp(h)

        # Message Passing operation
        h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)

        # Update function f_u
        h = self.res1(h)
        h = self.mlp(h) + res_h
        h = self.res2(h)
        h = self.res3(h)

        # Message Passing operation
        h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)

        return h

    def message(self, x_i, x_j, edge_attr, edge_index, num_nodes):
        num_edge = edge_attr.size()[0]

        x_edge = torch.cat((x_i[:num_edge], x_j[:num_edge], edge_attr), -1)
        x_edge = self.x_edge_mlp(x_edge)

        x_j = torch.cat((self.linear(edge_attr) * x_edge, x_j[num_edge:]), dim=0)

        return x_j

    def update(self, aggr_out):
        return aggr_out


class Local_MP(torch.nn.Module):
    def __init__(self, dim):
        super(Local_MP, self).__init__()
        self.dim = dim

        self.h_mlp = MLP([self.dim, self.dim])

        self.mlp_kj = MLP([3 * self.dim, self.dim])
        self.mlp_ji_1 = MLP([3 * self.dim, self.dim])
        self.mlp_ji_2 = MLP([self.dim, self.dim])
        self.mlp_jj = MLP([self.dim, self.dim])

        self.mlp_sbf1 = MLP([self.dim, self.dim, self.dim])
        self.mlp_sbf2 = MLP([self.dim, self.dim, self.dim])
        self.lin_rbf1 = nn.Linear(self.dim, self.dim, bias=False)
        self.lin_rbf2 = nn.Linear(self.dim, self.dim, bias=False)

        self.res1 = Res(self.dim)
        self.res2 = Res(self.dim)
        self.res3 = Res(self.dim)

        self.lin_rbf_out = nn.Linear(self.dim, self.dim, bias=False)

        self.h_mlp = MLP([self.dim, self.dim])

        self.y_mlp = MLP([self.dim, self.dim, self.dim, self.dim])
        self.y_W = nn.Linear(self.dim, 1)

    def forward(self, h, rbf, sbf1, sbf2, idx_kj, idx_ji_1, idx_jj, idx_ji_2, edge_index, num_nodes=None):
        res_h = h

        # Integrate the Cross Layer Mapping inside the Local Message Passing
        h = self.h_mlp(h)

        # Message Passing 1
        j, i = edge_index
        m = torch.cat([h[i], h[j], rbf], dim=-1)

        m_kj = self.mlp_kj(m)
        m_kj = m_kj * self.lin_rbf1(rbf)
        m_kj = m_kj[idx_kj] * self.mlp_sbf1(sbf1)
        m_kj = scatter(m_kj, idx_ji_1, dim=0, dim_size=m.size(0), reduce='add')

        m_ji_1 = self.mlp_ji_1(m)

        m = m_ji_1 + m_kj

        # Message Passing 2       (index jj denotes j'i in the main paper)
        m_jj = self.mlp_jj(m)
        m_jj = m_jj * self.lin_rbf2(rbf)
        m_jj = m_jj[idx_jj] * self.mlp_sbf2(sbf2)
        m_jj = scatter(m_jj, idx_ji_2, dim=0, dim_size=m.size(0), reduce='add')

        m_ji_2 = self.mlp_ji_2(m)

        m = m_ji_2 + m_jj

        # Aggregation
        m = self.lin_rbf_out(rbf) * m
        h = scatter(m, i, dim=0, dim_size=h.size(0), reduce='add')

        # Update function f_u
        h = self.res1(h)
        h = self.h_mlp(h) + res_h
        h = self.res2(h)
        h = self.res3(h)

        # Output Module
        y = self.y_mlp(h)
        y = self.y_W(y)

        return h, y


class TransmxmConfig(PretrainedConfig):
    model_type = "transmxm"

    def __init__(
        self,
        dim: int=128,
        n_layer: int=6,
        cutoff: float=5.0,
        num_spherical: int=7,
        num_radial: int=6,
        envelope_exponent: int=5,

        smiles: List[str] = None,
        processor_class: str = "SmilesProcessor",
        **kwargs,
    ):

        self.dim = dim                                    # the dimension of input feature
        self.n_layer = n_layer                            # the number of GCN layers
        self.cutoff = cutoff                              # the cutoff distance for neighbor searching
        self.num_spherical = num_spherical                # the number of spherical harmonics
        self.num_radial = num_radial                         # the number of radial basis
        self.envelope_exponent = envelope_exponent             # the envelope exponent

        self.smiles = smiles                      # process smiles
        self.processor_class = processor_class


        super().__init__(**kwargs)



class TransmxmModel(PreTrainedModel):
    config_class = TransmxmConfig

    def __init__(self, config):
        super().__init__(config)

        self.backbone = TransMXMNet(
            dim=config.dim,
            n_layer=config.n_layer,
            cutoff=config.cutoff,
            num_spherical=config.num_spherical,
            num_radial=config.num_radial,
            envelope_exponent=config.envelope_exponent,
        )
        self.process = SmilesDataset(
            smiles=config.smiles,
        )

        self.model = None
        self.dataset = None
        self.output = None
        self.data_loader = None
        self.pred_data = None

    def forward(self, tensor):
        return self.backbone.forward_features(tensor)

    def SmilesProcessor(self, smiles):
        return self.process.get_data(smiles)


    def predict_smiles(self, smiles, device: str='cpu', result_dir: str='./', **kwargs):


        batch_size = kwargs.pop('batch_size', 1)
        shuffle = kwargs.pop('shuffle', False)
        drop_last = kwargs.pop('drop_last', False)
        num_workers = kwargs.pop('num_workers', 0)

        self.model = AutoModel.from_pretrained("Huhujingjing/custom-transmxm", trust_remote_code=True).to(device)
        self.model.eval()

        self.dataset = self.process.get_data(smiles)
        self.output = ""
        self.output += ("predicted samples num: {}\n".format(len(self.dataset)))
        self.output +=("predicted samples:{}\n".format(self.dataset[0]))
        self.data_loader = DataLoader(self.dataset,
                                      batch_size=batch_size,
                                      shuffle=shuffle,
                                      drop_last=drop_last,
                                      num_workers=num_workers
                                      )
        self.pred_data = {
            'smiles': [],
            'pred': []
        }

        for batch in tqdm(self.data_loader):
            batch = batch.to(device)
            with torch.no_grad():
                self.pred_data['smiles'] += batch['smiles']
                self.pred_data['pred'] += self.model(batch).cpu().tolist()

        pred = torch.tensor(self.pred_data['pred']).reshape(-1)
        if device == 'cuda':
            pred = pred.cpu().tolist()
        self.pred_data['pred'] = pred
        pred_df = pd.DataFrame(self.pred_data)
        pred_df['pred'] = pred_df['pred'].apply(lambda x: round(x, 2))
        self.output +=('-' * 40 + '\n'+'predicted result: \n'+'{}\n'.format(pred_df))
        self.output +=('-' * 40)

        pred_df.to_csv(os.path.join(result_dir, 'prediction.csv'), index=False)
        self.output +=('\nsave predicted result to {}\n'.format(os.path.join(result_dir, 'prediction.csv')))

        return self.output


if __name__ == "__main__":

    transmxm_config = TransmxmConfig.from_pretrained("custom-transmxm")

    transmxmd = TransmxmModel(transmxm_config)
    transmxmd.model.load_state_dict(torch.load(r'G:\Trans_MXM\runs\model.pt'))
    transmxmd.save_pretrained("custom-transmxm")