FPN Model Card

Table of Contents:

Load trained model

import segmentation_models_pytorch as smp

model = smp.from_pretrained("<save-directory-or-this-repo>")

Model init parameters

model_init_params = {
    "encoder_name": "resnet34",
    "encoder_depth": 5,
    "encoder_weights": "imagenet",
    "decoder_pyramid_channels": 256,
    "decoder_segmentation_channels": 128,
    "decoder_merge_policy": "add",
    "decoder_dropout": 0.2,
    "in_channels": 3,
    "classes": 1,
    "activation": None,
    "upsampling": 4,
    "aux_params": None
}

Model metrics

[
    {
        "test_per_image_iou": 0.9088109135627747,
        "test_dataset_iou": 0.9156176447868347
    }
]

Dataset

Dataset name: Oxford Pet

More Information

This model has been pushed to the Hub using the PytorchModelHubMixin

Downloads last month
172
Safetensors
Model size
23.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support