prateeky2806's picture
Training in progress, step 400
5305e08
raw
history blame
12.6 kB
{
"best_metric": 0.6735566258430481,
"best_model_checkpoint": "./output_v2/7b_cluster01_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_01/checkpoint-400",
"epoch": 0.604001510003775,
"global_step": 400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7673,
"step": 10
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7735,
"step": 20
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7443,
"step": 30
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6747,
"step": 40
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.672,
"step": 50
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.6703,
"step": 60
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.6624,
"step": 70
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6804,
"step": 80
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6378,
"step": 90
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.6781,
"step": 100
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6059,
"step": 110
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6616,
"step": 120
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.6895,
"step": 130
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.6842,
"step": 140
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.6419,
"step": 150
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.6201,
"step": 160
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.6317,
"step": 170
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6828,
"step": 180
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.6586,
"step": 190
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.663,
"step": 200
},
{
"epoch": 0.3,
"eval_loss": 0.6853392720222473,
"eval_runtime": 230.5166,
"eval_samples_per_second": 4.338,
"eval_steps_per_second": 2.169,
"step": 200
},
{
"epoch": 0.3,
"mmlu_eval_accuracy": 0.4676449470057811,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0329186485851714,
"step": 200
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.6087,
"step": 210
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.619,
"step": 220
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.6318,
"step": 230
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.6463,
"step": 240
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.6824,
"step": 250
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.6566,
"step": 260
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.6696,
"step": 270
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5874,
"step": 280
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.6725,
"step": 290
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.6457,
"step": 300
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.6532,
"step": 310
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.6033,
"step": 320
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.6371,
"step": 330
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.6461,
"step": 340
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.6207,
"step": 350
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.6267,
"step": 360
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.6129,
"step": 370
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.677,
"step": 380
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.7014,
"step": 390
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.6801,
"step": 400
},
{
"epoch": 0.6,
"eval_loss": 0.6735566258430481,
"eval_runtime": 230.1155,
"eval_samples_per_second": 4.346,
"eval_steps_per_second": 2.173,
"step": 400
},
{
"epoch": 0.6,
"mmlu_eval_accuracy": 0.4676078319072668,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0410969870520013,
"step": 400
}
],
"max_steps": 5000,
"num_train_epochs": 8,
"total_flos": 9.92288665729106e+16,
"trial_name": null,
"trial_params": null
}