GemSUra-edu / README.md
IAmSkyDra's picture
Update README.md
69948fe verified
|
raw
history blame
2.6 kB
metadata
license: apache-2.0
datasets:
  - IAmSkyDra/HCMUT_FAQ
language:
  - vi
tags:
  - education
widget:
  - text: Chào bạn
    output:
      text: >-
        Chào bạn! Tôi là GemSUra-edu, một trợ lý AI được phát triển bởi Long
        Nguyen.

Introduction

GemSUra-edu is a large language model fine-tuned on a dataset of FAQs from HCMUT, based on the pre-trained model GemSUra 2B developed by the URA research group at Ho Chi Minh City University of Technology (HCMUT).

Inference (with Unsloth for higher speed)

from unsloth import FastLanguageModel
import torch

# Load model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="IAmSkyDra/GemSUra-edu",
    max_seq_length=4096,
    dtype=None,
    load_in_4bit=True
)

FastLanguageModel.for_inference(model)

query_template = "<start_of_turn>user\n{query}<end_of_turn>\n<start_of_turn>model\n"

while True:
    query = input("Query: ")
    if query.lower() == "exit":
        break

    query = query_template.format(query=query)
    inputs = tokenizer(query, return_tensors="pt")

    outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=True)
    generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    answer = generated_text[0].split("model\n")[1].strip()
    print(answer)

Inference (with Transformers)

import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

pipeline_kwargs = {
    "temperature": 0.1,
    "max_new_tokens": 4096,
    "do_sample": True
}

if __name__ == "__main__":
    # Load model
    model = AutoModelForCausalLM.from_pretrained(
        "IAmSkyDra/GemSUra-edu",
        device_map="auto"
    )
    model.eval()

    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        "IAmSkyDra/GemSUra-edu",
        trust_remote_code=True
    )

    pipeline = transformers.pipeline(
        model=model,
        tokenizer=tokenizer,
        return_full_text=False,
        task='text-generation',
        **pipeline_kwargs
    )

    query_template = "<start_of_turn>user\n{query}<end_of_turn>\n<start_of_turn>model\n"

    while True:
        query = input("Query: ")
        if query.lower() == "exit":
            break

        query = query_template.format(query=query)
        answer = pipeline(query)[0]["generated_text"]
        answer = answer.split("model\n")[1].strip()
        print(answer)

Notation

If you want to quantize the model for deployment on local devices, it should be quantized to at least 8 bits.