spatialvla-4b-mix-224-pt / action_tokenizer.py
delinqu's picture
Upload folder using huggingface_hub
367577f verified
# MIT License
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
# coding=utf-8
"""
action_tokenizer.py
Extension class; wraps base LLM/VLM tokenizer with logic to discretize and tokenize continuous robot actions.
"""
from typing import List, Union, Dict, Tuple, Optional
import numpy as np
from transformers import PreTrainedTokenizerBase
from pathlib import Path
import json
from scipy.stats import norm
import torch
ACTION_TOKEN = '<ACTION{:05d}>'
"""Spatial Tokenizer"""
class ActionTokenizer:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: int = 256,
min_action: int = -1,
max_action: int = 1,
):
self._vocab_size = num_bins
self.tokenizer = tokenizer
self.min_action, self.max_action = min_action, max_action
self.bin_centers = np.linspace(min_action, max_action, num_bins)
# add special action tokens to language tokenizer
token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.action_token_begin_idx = self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 7), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n, 7), tokens.
"""
action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
ids = np.digitize(action, self.bin_centers, right=True) # [0, 255]
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n, 7), token ids.
return: np.ndarray, (n, 7), continuous actions
"""
ids = action_token_id - self.action_token_begin_idx
ids = np.clip(ids, a_min=0, a_max=self._vocab_size - 1)
return self.bin_centers[ids]
@property
def vocab_size(self) -> int:
return self._vocab_size
"""Spatial Tokenizer"""
class TranslationTokenizer:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: Dict,
bin_policy: Optional[Dict] = None,
use_spherical: bool = True,
):
self.tokenizer = tokenizer
self.num_theta_bins = num_bins["theta_bins"]
self.num_phi_bins = num_bins["phi_bins"]
self.num_r_bins = num_bins["r_bins"]
self.use_spherical = use_spherical
# for indexing
self.NP = self.num_phi_bins * self.num_r_bins
# add special action tokens to language tokenizer
self._vocab_size = self.num_theta_bins * self.num_phi_bins * self.num_r_bins
token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
self.set_bins(bin_policy)
def set_bins(self, bin_policy):
self.theta_bins = np.array(bin_policy["theta_bins"])
self.phi_bins = np.array(bin_policy["phi_bins"])
self.r_bins = np.array(bin_policy["r_bins"])
def cartesian_to_spherical(self, x, y, z):
theta = np.arctan2(np.sqrt(x**2 + y**2), z) # polar angle
phi = np.arctan2(y, x) # azimuthal angle
r = np.sqrt(x**2 + y**2 + z**2)
return theta, phi, r
def spherical_to_cartesian(self, theta, phi, r):
x = r * np.sin(theta) * np.cos(phi)
y = r * np.sin(theta) * np.sin(phi)
z = r * np.cos(theta)
return x, y, z
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n,), tokens.
"""
if self.use_spherical:
theta, phi, r = self.cartesian_to_spherical(action[:, 0], action[:, 1], action[:, 2])
else:
theta, phi, r = action[:, 0], action[:, 1], action[:, 2]
disc_theta = np.digitize(theta, self.theta_bins[1:-1]) # b
disc_phi = np.digitize(phi, self.phi_bins[1:-1])
disc_r = np.digitize(r, self.r_bins[1:-1])
ids = disc_theta * self.NP + disc_phi * self.num_r_bins + disc_r
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n,), token ids.
return: np.ndarray, (n, 3), continuous actions
"""
action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
ids = action_token_id - self.token_start_idx
disc_theta, disc_phi, disc_r = ids // self.NP, (ids % self.NP) // self.num_r_bins, ids % self.num_r_bins
theta = 0.5 * (self.theta_bins[disc_theta] + self.theta_bins[disc_theta + 1])
phi = 0.5 * (self.phi_bins[disc_phi] + self.phi_bins[disc_phi + 1])
r = 0.5 * (self.r_bins[disc_r] + self.r_bins[disc_r + 1])
# clip action to [-1, 1], due to the spherical coordinate action space is the circumscribed sphere of the Cartesian action space.
x, y, z = self.spherical_to_cartesian(theta, phi, r) if self.use_spherical else (theta, phi, r)
x, y, z = np.clip([x, y, z], -1, 1)
return np.stack((x, y, z), axis=1)
@property
def vocab_size(self) -> int:
return self._vocab_size
class RotationTokenizer:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: Dict,
bin_policy: Optional[Dict] = None,
array_begin_idx=None,
):
self.tokenizer = tokenizer
self.num_roll_bins = num_bins["roll_bins"] # M
self.num_pitch_bins = num_bins["pitch_bins"] # N
self.num_yaw_bins = num_bins["yaw_bins"] # P
self.array_begin_idx = array_begin_idx
# for indexing
self.NP = self.num_pitch_bins * self.num_yaw_bins
# add special action tokens to language tokenizer
self._vocab_size = self.num_roll_bins * self.num_pitch_bins * self.num_yaw_bins
token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self._vocab_size)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} ROTATION TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
self.set_bins(bin_policy)
def set_bins(self, bin_policy):
self.roll_bins = np.array(bin_policy["roll_bins"])
self.pitch_bins = np.array(bin_policy["pitch_bins"])
self.yaw_bins = np.array(bin_policy["yaw_bins"])
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n,), tokens.
"""
roll, pitch, yaw = action[:, 0], action[:, 1], action[:, 2]
disc_roll = np.clip(np.digitize(roll, self.roll_bins) - 1, 0, self.num_roll_bins - 1)
disc_pitch = np.clip(np.digitize(pitch, self.pitch_bins) - 1, 0, self.num_pitch_bins - 1)
disc_yaw = np.clip(np.digitize(yaw, self.yaw_bins) - 1, 0, self.num_yaw_bins - 1)
ids = disc_roll * self.NP + disc_pitch * self.num_yaw_bins + disc_yaw
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: Union[np.int64, np.ndarray]) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n,), token ids.
return: np.ndarray, (n, 3), continuous actions
"""
action_token_id = np.clip(action_token_id, a_min=self.token_start_idx, a_max=self.token_end_idx)
ids = action_token_id - self.token_start_idx
disc_roll, disc_pitch, disc_yaw = ids // self.NP, (ids % self.NP) // self.num_yaw_bins, ids % self.num_yaw_bins
roll = 0.5 * (self.roll_bins[disc_roll] + self.roll_bins[disc_roll + 1])
pitch = 0.5 * (self.pitch_bins[disc_pitch] + self.pitch_bins[disc_pitch + 1])
yaw = 0.5 * (self.yaw_bins[disc_yaw] + self.yaw_bins[disc_yaw + 1])
return np.stack((roll, pitch, yaw), axis=1)
@property
def vocab_size(self) -> int:
return self._vocab_size
class GripperTokenzier:
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: int = 2,
array_begin_idx = None,
) -> None:
self.tokenizer = tokenizer
self.num_bins = num_bins
self.array_begin_idx = array_begin_idx
token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self.num_bins)]
self.token_array = np.array(token_list)
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
print(f"Add {num_new_tokens} GRIPPER TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n,), continuous actions in Cartesian or Spherical coordinates.
return: np.ndarray, (n,), tokens.
"""
ids = np.where(action >= 0.5, 1, 0)
return self.token_array[ids]
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_id: np.ndarray, (n,), token ids.
return: np.ndarray, (n, 1), continuous actions
"""
action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
ids = action_token_id - self.token_start_idx
actions = np.where(ids == 0, 0., 1.)
return actions[:, None]
@property
def vocab_size(self) -> int:
return self.num_bins
class SphericalCoordinateActionTokenizer:
range_bins = {
"translation": {
"theta_bins": (0.0, np.pi),
"phi_bins": (-np.pi, np.pi),
"r_bins": (0.0, np.sqrt(3)),
},
"rotation": {
"roll_bins": (-1.0, 1.0),
"pitch_bins": (-1.0, 1.0),
"yaw_bins": (-1.0, 1.0),
},
}
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
num_bins: Dict,
gs_params: Dict = None,
bin_policy: Dict = None,
use_spherical: bool = True,
min_sigma: float = 0.0,
min_action: float = -1.0,
max_action: float = 1.0,
):
"""set bin_policy if exist, otherwise, caculate bin_policy from gs_params.(unifrom if None Gaussian)
gs_params: Optional[Dict],
bin_policy: Optional[Dict],
"""
self.tokenizer = tokenizer
self.min_action, self.max_action = min_action, max_action
self.num_bins = num_bins
self.min_sigma = min_sigma
# set bin policy
self.bin_policy = bin_policy if bin_policy else self.get_bin_policy(gs_params, self.min_sigma)
self.translation_tokenizer = TranslationTokenizer(
self.tokenizer,
self.num_bins["translation"],
self.bin_policy["translation"],
use_spherical=use_spherical
)
self.rotation_tokenizer = RotationTokenizer(
self.tokenizer,
self.num_bins["rotation"],
self.bin_policy["rotation"],
array_begin_idx=self.translation_tokenizer.vocab_size,
)
self.gripper_tokenizer = GripperTokenzier(
self.tokenizer,
self.num_bins["gripper"],
array_begin_idx=self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size
)
self._vocab_size = self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size + self.gripper_tokenizer.vocab_size
def __call__(self, action: np.ndarray) -> List[str]:
"""Discretize continuous actions to tokens.
action: np.ndarray, (n, 7), continuous actions in Cartesian coordinates.
return: np.ndarray, (n, 3), tokens.
"""
if len(action.shape) == 1:
assert action.shape[0] == 7, f"action dim mismatch, got action shape: {action.shape}"
action = action.reshape(1, 7)
assert action.shape[1] == 7, f"action dim mismatch, got action shape: {action.shape}"
action = np.clip(action, a_min=self.min_action, a_max=self.max_action)
trans_tokens = self.translation_tokenizer(action[:, :3]) # (n,)
rot_tokens = self.rotation_tokenizer(action[:, 3:6]) # (n,)
grip_tokens = self.gripper_tokenizer(action[:, 6]) # (n,)
return np.stack((trans_tokens, rot_tokens, grip_tokens), axis=1) # (n, 3)
def decode_token_ids_to_actions(self, action_token_ids: np.ndarray) -> np.ndarray:
"""decode token ids to continuous actions.
action_token_ids: np.ndarray, (n, 3), token ids.
"""
if len(action_token_ids.shape) == 1:
assert action_token_ids.shape[0] == 3, f"action token id numbers mismatich, need 3 got {action_token_ids.shape[0]}"
action_token_ids = action_token_ids.reshape(1, 3)
assert action_token_ids.shape[1] == 3, f"token id numbers mismatich, need 3 got {action_token_ids.shape[1]}"
trans_action = self.translation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 0]) # (n, 3)
rot_action = self.rotation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 1]) # (n, 3)
grip_action = self.gripper_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 2]) # (n, 1)
return np.concatenate((trans_action, rot_action, grip_action), axis=1) # (n, 7)
@property
def vocab_size(self) -> int:
return self._vocab_size
@property
def action_token_begin_idx(self) -> int:
return self.translation_tokenizer.token_start_idx
def get_bin_policy(self, gs_params=None, min_sigma=0.0):
bin_policy = {
"translation": {"theta_bins": None, "phi_bins": None, "r_bins": None},
"rotation": {"roll_bins": None, "pitch_bins": None, "yaw_bins": None}
}
if gs_params is None:
for bin_type in self.range_bins.keys():
for bin_key in self.range_bins[bin_type].keys():
bin_policy[bin_type][bin_key] = np.linspace(*self.range_bins[bin_type][bin_key], self.num_bins[bin_type][bin_key] + 1)
print(f"use unifrom bin grids ... \n{bin_policy}")
else:
for bin_type in self.range_bins.keys():
for bin_key in self.range_bins[bin_type].keys():
mu = gs_params[bin_key.split("_")[0].lower()]["mu"]
sigma = max(gs_params[bin_key.split("_")[0].lower()]["sigma"], min_sigma)
bin_bound_prob = np.linspace(
norm.cdf(self.range_bins[bin_type][bin_key][0], loc=mu, scale=sigma),
norm.cdf(self.range_bins[bin_type][bin_key][1], loc=mu, scale=sigma),
self.num_bins[bin_type][bin_key] + 1,
)
bin_boundary = norm.ppf(bin_bound_prob, loc=mu, scale=sigma)
bin_policy[bin_type][bin_key] = np.clip(
bin_boundary,
self.range_bins[bin_type][bin_key][0],
self.range_bins[bin_type][bin_key][1],
).tolist() # for serialize
print(f"caculate bin grids from gaussians \n{bin_policy}")
return bin_policy
def get_norm_meshgrid(self, bin_policy):
grids = []
policy = {k1: {k2: np.array(v2) for k2, v2 in v1.items()} for k1, v1 in bin_policy.items()}
# NOTE: use unify k,v order of range_bins (tpr, rpy)
for bin_type in self.range_bins.keys():
bounds = []
for bin_key in self.range_bins[bin_type].keys():
minb, maxb = self.range_bins[bin_type][bin_key][0], self.range_bins[bin_type][bin_key][1]
bin_boundary = policy[bin_type][bin_key]
bin_center = (bin_boundary[:-1] + bin_boundary[1:]) / 2
bin_center = np.concatenate([np.array([minb]),bin_center,np.array([maxb])]) # padding
bin_center = (bin_center - minb) / (maxb - minb) # nomalize (m, n, k)
bounds.append(bin_center)
# generate grids
grid_x, grid_y, grid_z = np.meshgrid(*bounds)
grids += [np.stack([grid_x, grid_y, grid_z], -1).reshape(-1, 3)]
return grids[0], grids[1] # (N, 3)
def spatial_embedding_adaption(self, gs_params, embeddings: torch.nn.Embedding, min_sigma=0.0, adpt_feature=False):
"""
gs_params0, gs_params1: Dict
embeddings: tensor (S,E)
"""
from scipy.interpolate import griddata
# __import__("ipdb").set_trace()
new_policy = self.get_bin_policy(gs_params, min_sigma=min_sigma)
trans_grids0, rot_grids0 = self.get_norm_meshgrid(self.bin_policy)
trans_grids1, rot_grids1 = self.get_norm_meshgrid(new_policy)
print("🔥 overwrite bin policy and tokenizer bins ...")
self.bin_policy = new_policy
self.min_sigma = min_sigma
self.translation_tokenizer.set_bins(new_policy["translation"])
self.rotation_tokenizer.set_bins(new_policy["rotation"])
if adpt_feature:
emb_data = embeddings.weight.data # (S, e)
_, E = emb_data.shape
# translation
m, n, k = (self.num_bins["translation"][k] for k in ["theta_bins", "phi_bins", "r_bins"])
N = m*n*k
trans_emb_data = emb_data[:N,].reshape(m, n, k, -1).permute(3, 0, 1, 2) # (e, m, n, k)
pad_emb = torch.nn.functional.pad(trans_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
adpt_trans_emb = griddata(trans_grids0, pad_emb.float(), trans_grids1, method='linear')
adpt_trans_emb = adpt_trans_emb.reshape(m+2, n+2, k+2, E)[1:-1, 1:-1, 1:-1,]
# rotation
m1, n1, k1 = (self.num_bins["rotation"][k] for k in ["roll_bins", "pitch_bins", "yaw_bins"])
M = m1*n1*k1
rot_emb_data = emb_data[N : N + M,].reshape(m1, n1, k1, -1).permute(3, 0, 1, 2) # (e, m, n, k)
pad_emb = torch.nn.functional.pad(rot_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
adpt_rot_emb = griddata(rot_grids0, pad_emb.float(), rot_grids1, method='linear')
adpt_rot_emb = adpt_rot_emb.reshape(m1+2, n1+2, k1+2, E)[1:-1, 1:-1, 1:-1,]
# set data
device, dtype = embeddings.weight.data.device, embeddings.weight.data.dtype
embeddings.weight.data[:N] = torch.Tensor(adpt_trans_emb.reshape(-1, E), device=device).to(dtype)
embeddings.weight.data[N:N+M] = torch.Tensor(adpt_rot_emb.reshape(-1, E), device=device).to(dtype)
print("🚀 DONE! adapt spatial embedding to new gaussian distributation finished.")
print(embeddings.weight.data)