|
--- |
|
license: cc-by-sa-4.0 |
|
base_model: ClassCat/roberta-small-basque |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- basque_glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: XLM-EusBERTa-topic-classification |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: basque_glue |
|
type: basque_glue |
|
config: bhtc |
|
split: validation |
|
args: bhtc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6494345718901454 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6432667195761544 |
|
- name: Precision |
|
type: precision |
|
value: 0.6447174737999963 |
|
- name: Recall |
|
type: recall |
|
value: 0.6494345718901454 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# XLM-EusBERTa-topic-classification |
|
|
|
This model is a fine-tuned version of [ClassCat/roberta-small-basque](https://huggingface.co/ClassCat/roberta-small-basque) on the basque_glue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.2158 |
|
- Accuracy: 0.6494 |
|
- F1: 0.6433 |
|
- Precision: 0.6447 |
|
- Recall: 0.6494 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 1.2439 | 1.0 | 1074 | 1.1310 | 0.6581 | 0.6316 | 0.6139 | 0.6581 | |
|
| 0.9539 | 2.0 | 2148 | 1.3019 | 0.6117 | 0.6034 | 0.6465 | 0.6117 | |
|
| 0.579 | 3.0 | 3222 | 1.5533 | 0.6645 | 0.6524 | 0.6661 | 0.6645 | |
|
| 0.3766 | 4.0 | 4296 | 2.3287 | 0.6381 | 0.6283 | 0.6590 | 0.6381 | |
|
| 0.2641 | 5.0 | 5370 | 2.2805 | 0.6597 | 0.6515 | 0.6707 | 0.6597 | |
|
| 0.1707 | 6.0 | 6444 | 2.6621 | 0.6397 | 0.6399 | 0.6581 | 0.6397 | |
|
| 0.1537 | 7.0 | 7518 | 2.9116 | 0.6408 | 0.6336 | 0.6452 | 0.6408 | |
|
| 0.0867 | 8.0 | 8592 | 3.1775 | 0.6344 | 0.6337 | 0.6531 | 0.6344 | |
|
| 0.0779 | 9.0 | 9666 | 3.2514 | 0.6543 | 0.6471 | 0.6593 | 0.6543 | |
|
| 0.0587 | 10.0 | 10740 | 3.3244 | 0.6457 | 0.6424 | 0.6488 | 0.6457 | |
|
| 0.0322 | 11.0 | 11814 | 3.8090 | 0.6214 | 0.6244 | 0.6488 | 0.6214 | |
|
| 0.0139 | 12.0 | 12888 | 3.8642 | 0.6247 | 0.6176 | 0.6424 | 0.6247 | |
|
| 0.0256 | 13.0 | 13962 | 3.8734 | 0.6419 | 0.6327 | 0.6398 | 0.6419 | |
|
| 0.0046 | 14.0 | 15036 | 4.0934 | 0.6365 | 0.6330 | 0.6463 | 0.6365 | |
|
| 0.0036 | 15.0 | 16110 | 4.0890 | 0.6484 | 0.6416 | 0.6469 | 0.6484 | |
|
| 0.0023 | 16.0 | 17184 | 4.0978 | 0.6505 | 0.6440 | 0.6470 | 0.6505 | |
|
| 0.0008 | 17.0 | 18258 | 4.1709 | 0.6478 | 0.6418 | 0.6449 | 0.6478 | |
|
| 0.0014 | 18.0 | 19332 | 4.1715 | 0.6505 | 0.6446 | 0.6458 | 0.6505 | |
|
| 0.0007 | 19.0 | 20406 | 4.2158 | 0.6489 | 0.6427 | 0.6443 | 0.6489 | |
|
| 0.0039 | 20.0 | 21480 | 4.2158 | 0.6494 | 0.6433 | 0.6447 | 0.6494 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|