Model description
BERTbase fine-tuned on SQuAD 2.0 : Encoder-based Transformer Language model, pretrained with Masked Language Modeling and Next Sentence Prediction.
Suitable for Question-Answering tasks, predicts answer spans within the context provided.
Language model: bert-base-uncased
Language: English
Downstream-task: Question-Answering
Training data: Train-set SQuAD 2.0
Evaluation data: Evaluation-set SQuAD 2.0
Hardware Accelerator used: GPU Tesla T4
Intended uses & limitations
For Question-Answering -
!pip install transformers
from transformers import pipeline
model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
question_answerer = pipeline("question-answering", model=model_checkpoint)
context = """
🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration
between them. It's straightforward to train your models with one before loading them for inference with the other.
"""
question = "Which deep learning libraries back 🤗 Transformers?"
question_answerer(question=question, context=context)
Results
Evaluation on SQuAD 2.0 validation dataset:
exact: 73.5029057525478,
f1: 76.79224102466394,
total: 11873,
HasAns_exact: 73.46491228070175,
HasAns_f1: 80.05301580395327,
HasAns_total: 5928,
NoAns_exact: 73.5407905803196,
NoAns_f1: 73.5407905803196,
NoAns_total: 5945,
best_exact: 73.5029057525478,
best_exact_thresh: 0.9997851848602295,
best_f1: 76.79224102466425,
best_f1_thresh: 0.9997851848602295,
total_time_in_seconds: 209.65395342100004,
samples_per_second: 56.63141479692573,
latency_in_seconds: 0.01765804374808389
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0122 | 1.0 | 8235 | 1.0740 |
0.6805 | 2.0 | 16470 | 1.0820 |
0.4542 | 3.0 | 24705 | 1.3537 |
This model is a fine-tuned version of bert-base-uncased on the squad_v2 dataset. It achieves the following results on the evaluation set:
- Loss: 1.3537
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
- Downloads last month
- 91
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for IProject-10/bert-base-uncased-finetuned-squad2
Base model
google-bert/bert-base-uncased