File size: 13,823 Bytes
937633f |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f42c3e4f310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42c3e4f3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42c3e4f430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42c3e4f4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f42c3e4f550>", "forward": "<function ActorCriticPolicy.forward at 0x7f42c3e4f5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f42c3e4f670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42c3e4f700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f42c3e4f790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42c3e4f820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42c3e4f8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42c3e4f940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f42c3e4a810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674042929307746659, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH4lmz7+cqA/T7wiPFR3vz9yhhU+pCCIP2yiJL7ssTu/h89Vv+f4IL+qnVC/iVwQPVjkBj7yzbA/Ck7+PizTRj/oXl+9FruOP2eotT5z/tS+Y/WIvgzey79P0ZU/UQ65Pu/Ah79Qwx4/WOz+PneHgj8y9w0+iXI8PG6OxT5/z6A/NcpFvxEs/b7MNJE+NxwCPughSD/7/Ia+YTH7PqHZCj+7PKu/xo8KPrVSkb6Z9s6/OwJBv86c4b4/bu09M+gCQHPn8r3u9x8/XLmAvwGadD3fYHE/UWXOv1js/j4oCnu/WdFpP4EPkzya0cU+rREQP6dPyr9CBiC/h3mCP+DnJr+HPkA/yR4gv03H1j/xTIa96zKkv2oDAj/m8ba/7iBYwICDJL+ImpA8CGrxPvNtZD80TqW+zZS6P0gAcL86Edw+32BxP1Flzr9Y7P4+KAp7v3jVIj9U9TI/VayYPgWoPT9mkOY+HpocP988ET/Unmy/02JKP202E789Ca4/y8yPPudbrL+4CXg9OQR8v8DXgb/ko3W9icj6vpAl8T5Eej8/UUQAv/LaeT40iYO/PsUgP99gcT9RZc6/WOz+PigKe7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaq9G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG8bgPQAAAABUb+i/AAAAALzRIb0AAAAAcQT0PwAAAABr3FA8AAAAAH+S9z8AAAAAU8IEPgAAAACOkv+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+9oMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOeEBb4AAAAAtEv6vwAAAAA3T5M7AAAAABlO5z8AAAAACS3GvQAAAAAfy/I/AAAAAB8uTb0AAAAAESHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmdHzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDcgAe+AAAAAMVt7r8AAAAAwzmGvQAAAADb+gBAAAAAAK+ctTwAAAAAXMfYPwAAAADadsu7AAAAAJ486L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvphK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkgcmPAAAAACfTeK/AAAAAIgTsDwAAAAAtwPcPwAAAACGAL69AAAAAH7U/D8AAAAAz3QuPAAAAACTtvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKKydGpda+yMAWyUTegDjAF0lEdApIl50MgEEHV9lChoBkdAo6KikuYhMmgHTegDaAhHQKSLnp0wJw91fZQoaAZHQJbU/K6nR9hoB03oA2gIR0CkjqIGpuMudX2UKGgGR0CkEcJBHCoCaAdN6ANoCEdApI9TwhGH6HV9lChoBkdApEHRlnRLK2gHTegDaAhHQKST4DqW1MN1fZQoaAZHQKHCX+H8CPpoB03oA2gIR0Cklfh4lhPTdX2UKGgGR0CjpYUKArhBaAdN6ANoCEdApJj8AWBSUHV9lChoBkdAo63UGxD9fmgHTegDaAhHQKSZrSZ0CBB1fZQoaAZHQKMjS9X9zfdoB03oA2gIR0CknlQ9q1w6dX2UKGgGR0CjP28fvF3qaAdN6ANoCEdApKC4D9wWFnV9lChoBkdApI2dK5Cng2gHTegDaAhHQKSjyf5DZ151fZQoaAZHQKTtyXRgJC1oB03oA2gIR0CkpHnvlU6xdX2UKGgGR0Ch2HtwaR6oaAdN6ANoCEdApKkdDSgGr3V9lChoBkdAkGOUovzvqmgHTegDaAhHQKSrR58jRlZ1fZQoaAZHQKTnXoL5RCRoB03oA2gIR0CkrlY4Qz1sdX2UKGgGR0CiBcxJ/XoUaAdN6ANoCEdApK8AUQCjlHV9lChoBkdAozUryz5XVGgHTegDaAhHQKSzmQWepXJ1fZQoaAZHQKWFhhG6PKdoB03oA2gIR0CktcdGqgh9dX2UKGgGR0CikLK0D2alaAdN6ANoCEdApLjCgsbvPXV9lChoBkdAolNdPLxI8WgHTegDaAhHQKS5biqhlDp1fZQoaAZHQKHNVE7W/ahoB03oA2gIR0CkvgCwr1/UdX2UKGgGR0Ci0D3TVlPKaAdN6ANoCEdApMAoJzDGcXV9lChoBkdAo6U7e40/GGgHTegDaAhHQKTDKlsP8Q91fZQoaAZHQKK8QqPOpsJoB03oA2gIR0Ckw+R9gF5fdX2UKGgGR0Cjj0GKIi1RaAdN6ANoCEdApMhoEOiFkHV9lChoBkdApFdiFbmlqWgHTegDaAhHQKTKgL+glGB1fZQoaAZHQKH2lORDCxhoB03oA2gIR0CkzX/O+qR2dX2UKGgGR0CjVZhnBciXaAdN6ANoCEdApM47yMDOknV9lChoBkdAo7f1CZ4Oc2gHTegDaAhHQKTS2mEXcg11fZQoaAZHQKQjLSjxkNFoB03oA2gIR0Ck1QCmVJL/dX2UKGgGR0CkAzI/zJ6qaAdN6ANoCEdApNgKfapPynV9lChoBkdAorM0KG+K0mgHTegDaAhHQKTYv9E1EVp1fZQoaAZHQKHOZlJYkmhoB03oA2gIR0Ck3W1+7UXpdX2UKGgGR0Cj5hubqhUSaAdN6ANoCEdApN+nLeQ+2XV9lChoBkdAozf62rn1WmgHTegDaAhHQKTiyIKtxMp1fZQoaAZHQKSUB2wFC9hoB03oA2gIR0Ck44T2OAAidX2UKGgGR0Cj7vrnLaEjaAdN6ANoCEdApOgezByjpXV9lChoBkdAov+GbG3nZGgHTegDaAhHQKTqSy5Zr591fZQoaAZHQKSdhLqUu+RoB03oA2gIR0Ck7U9LQHAzdX2UKGgGR0Cjr4bx/d6+aAdN6ANoCEdApO398/lhgHV9lChoBkdAo1zweeWfLGgHTegDaAhHQKTymTJQtSR1fZQoaAZHQKL44/OdGy5oB03oA2gIR0Ck9LcJUo8ZdX2UKGgGR0ChnIYKYzBRaAdN6ANoCEdApPe9KbrkbXV9lChoBkdAosm2WBz3iGgHTegDaAhHQKT4c6MBIWh1fZQoaAZHQKKqARW912doB03oA2gIR0Ck/RJM6BAfdX2UKGgGR0CitUbJOnEVaAdN6ANoCEdApP83e1rqMXV9lChoBkdAo0ippztCzGgHTegDaAhHQKUCPUCJXQt1fZQoaAZHQKFOpZRsMy9oB03oA2gIR0ClAunlfZ27dX2UKGgGR0CiyvNQsPJ8aAdN6ANoCEdApQdvRTjvNXV9lChoBkdApCv4KQaJh2gHTegDaAhHQKUJi2rn1Wd1fZQoaAZHQKHT3/giu+1oB03oA2gIR0ClDIKPwNLEdX2UKGgGR0CkMDNC7btaaAdN6ANoCEdApQ04GOdXk3V9lChoBkdApLco9eQdS2gHTegDaAhHQKUR8fvnbIt1fZQoaAZHQKObrTPSlWRoB03oA2gIR0ClFCAOjIq9dX2UKGgGR0CkcQzZpSJkaAdN6ANoCEdApRcoe/5+IHV9lChoBkdAoKN1p48lomgHTegDaAhHQKUX65U96kZ1fZQoaAZHQKPZgXHBDXxoB03oA2gIR0ClHM+fAbhndX2UKGgGR0ClR/7l7tzCaAdN6ANoCEdApR7oUahpQHV9lChoBkdAowUED4gzQGgHTegDaAhHQKUh+WGh24d1fZQoaAZHQKNzJ1wo9cNoB03oA2gIR0ClIqb3fyf+dX2UKGgGR0Ckw5zo+wC9aAdN6ANoCEdApSc3W6K+BnV9lChoBkdApI6ypWFN+WgHTegDaAhHQKUpU1VHWjJ1fZQoaAZHQKE7R029+PRoB03oA2gIR0ClLE3/HYHxdX2UKGgGR0Ck0eMW43FUaAdN6ANoCEdApS0KY7aIvnV9lChoBkdApLCYYFaB7WgHTegDaAhHQKUxk5nUUfx1fZQoaAZHQKS+YW9lEqloB03oA2gIR0ClM7R7qptKdX2UKGgGR0Ckquos7MgVaAdN6ANoCEdApTbekFfReHV9lChoBkdApEgASQHRkWgHTegDaAhHQKU3k5+Ytxx1fZQoaAZHQKSLqGvfTCtoB03oA2gIR0ClPEZjQRf4dX2UKGgGR0CkWiwnx8UmaAdN6ANoCEdApT5rvTgEU3V9lChoBkdApIBeBczIm2gHTegDaAhHQKVBcNtIkJN1fZQoaAZHQKNGOTQE6ktoB03oA2gIR0ClQiy0rsjWdX2UKGgGR0Ck9/u5rgwXaAdN6ANoCEdApUa+mixmkHV9lChoBkdApFLsejmCAmgHTegDaAhHQKVI1q9oN/h1fZQoaAZHQKRgTqQA+6loB03oA2gIR0ClS9cwQDmsdX2UKGgGR0ClIpDn3cpLaAdN6ANoCEdApUyRPKuB+XV9lChoBkdApTcUYbbUPWgHTegDaAhHQKVRTTUiILx1fZQoaAZHQKTYqgQpWmxoB03oA2gIR0ClU4mY0EX+dX2UKGgGR0ClJFrSeAd5aAdN6ANoCEdApVamGCZnc3V9lChoBkdApZafFLnLaGgHTegDaAhHQKVXVuGbkOt1fZQoaAZHQKUE5O0LMLZoB03oA2gIR0ClXDQZOzppdX2UKGgGR0Chtp2rfcesaAdN6ANoCEdApV5dvGZNPHV9lChoBkdAo+bOK0lZ5mgHTegDaAhHQKVhdKujh1l1fZQoaAZHQKBuDJW/8EVoB03oA2gIR0ClYjCfHxSYdX2UKGgGR0CkIjf8dgfEaAdN6ANoCEdApWb3EETxonV9lChoBkdAoCcINqgyumgHTegDaAhHQKVpJgssg+11fZQoaAZHQKKNoVkc0choB03oA2gIR0ClbDspobn6dX2UKGgGR0Cj4+M1TBInaAdN6ANoCEdApWzy9K28ZnV9lChoBkdAo3+oM+eOGWgHTegDaAhHQKVxjUrCm/F1fZQoaAZHQKPs++Eh7mdoB03oA2gIR0Clc7lZPl+3dX2UKGgGR0ChctK0+kgwaAdN6ANoCEdApXbcLlV94XV9lChoBkdAo810xqO94GgHTegDaAhHQKV3kynk1dh1fZQoaAZHQKVu4RJVbRpoB03oA2gIR0ClfDZmRNh3dX2UKGgGR0CjZLmKhtcfaAdN6ANoCEdApX5cDB/I83V9lChoBkdAo00gKD0162gHTegDaAhHQKWBZrtVrAR1fZQoaAZHQKD/6Ac1fmdoB03oA2gIR0ClghfuTibVdX2UKGgGR0Cka2DzI3iraAdN6ANoCEdApYasefZmI3V9lChoBkdAo2xgC6pYLmgHTegDaAhHQKWIzhcZ9/l1fZQoaAZHQKNf+DwH7gtoB03oA2gIR0Cli9VUVBUrdX2UKGgGR0CkYuxpUPxyaAdN6ANoCEdApYyD4DcM3XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 20, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |