Dataset must be processed as following:


def preprocess_function_with_seconds(ds):

    inputs = ds['generated']
    targets =  ds['subtitle']

    model_inputs = tokenizer(inputs, truncation=True, max_length=128, padding=True, return_tensors="np")
    secs = list(map(lambda x: "{:.1f}".format(x), ds["seconds"]))
    sec_inputs = tokenizer(secs, truncation=True, max_length=128, padding=True, return_tensors="np")

    model_inputs['input_ids'] = np.concatenate((sec_inputs['input_ids'][:,1:2], model_inputs['input_ids']), 1)
    model_inputs['attention_mask'] = np.concatenate((sec_inputs['attention_mask'][:,1:2], model_inputs['attention_mask']), 1)

    with tokenizer.as_target_tokenizer():
        labels = tokenizer(targets, truncation=True, max_length=128, padding=True, return_tensors="np")

    model_inputs["labels"] = labels["input_ids"]
    return model_inputs    

Importing the model and tokenizer:

tokenizer = MBart50Tokenizer.from_pretrained("IljaSamoilov/MBART-estonian-subtitles-with-seconds", src_lang="et_EE", tgt_lang="et_EE")
model = MBartForConditionalGeneration.from_pretrained("IljaSamoilov/MBART-estonian-subtitles-with-seconds")
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.