gigasaiga_lora / README.md
IlyaGusev's picture
Update README.md
47cbdb4
metadata
datasets:
  - IlyaGusev/ru_turbo_alpaca
  - IlyaGusev/ru_turbo_saiga
  - IlyaGusev/ru_sharegpt_cleaned
  - IlyaGusev/oasst1_ru_main_branch
  - IlyaGusev/ru_turbo_alpaca_evol_instruct
  - lksy/ru_instruct_gpt4
language:
  - ru
pipeline_tag: conversational
license: cc-by-4.0

GigaSaiga, Russian ruGPT-3.5-13B-based chatbot

Based on ruGPT-3.5-13B.

This is an adapter-only version.

Colab: link

Training code: link

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

MODEL_NAME = "IlyaGusev/gigasaiga_lora"
DEFAULT_MESSAGE_TEMPLATE = "<s> {role}\n{content}</s>\n"
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."

class Conversation:
    def __init__(
        self,
        message_template=DEFAULT_MESSAGE_TEMPLATE,
        system_prompt=DEFAULT_SYSTEM_PROMPT,
        start_token_id=2,
        bot_token_id=46787
    ):
        self.message_template = message_template
        self.start_token_id = start_token_id
        self.bot_token_id = bot_token_id
        self.messages = [{
            "role": "system",
            "content": system_prompt
        }]

    def get_start_token_id(self):
        return self.start_token_id

    def get_bot_token_id(self):
        return self.bot_token_id

    def add_user_message(self, message):
        self.messages.append({
            "role": "user",
            "content": message
        })

    def add_bot_message(self, message):
        self.messages.append({
            "role": "bot",
            "content": message
        })

    def get_prompt(self, tokenizer):
        final_text = ""
        for message in self.messages:
            message_text = self.message_template.format(**message)
            final_text += message_text
        final_text += tokenizer.decode([self.start_token_id, self.bot_token_id])
        return final_text.strip()


def generate(model, tokenizer, prompt, generation_config):
    data = tokenizer(prompt, return_tensors="pt")
    data = {k: v.to(model.device) for k, v in data.items()}
    output_ids = model.generate(
        **data,
        generation_config=generation_config
    )[0]
    output_ids = output_ids[len(data["input_ids"][0]):]
    output = tokenizer.decode(output_ids, skip_special_tokens=True)
    return output.strip()

config = PeftConfig.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    load_in_8bit=True,
    torch_dtype=torch.float16,
    device_map="auto"
)
model = PeftModel.from_pretrained(
    model,
    MODEL_NAME,
    torch_dtype=torch.float16
)
model.eval()

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)

inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
for inp in inputs:
    conversation = Conversation()
    conversation.add_user_message(inp)
    prompt = conversation.get_prompt(tokenizer)

    output = generate(model, tokenizer, prompt, generation_config)
    print(inp)
    print(output)
    print()
    print("==============================")
    print()

Examples:

User: Почему трава зеленая? 
Saiga: Трава имеет зеленый цвет благодаря хлорофиллу - пигменту растений, который поглощает световую энергию и преобразует ее в химическую энергию для роста растения. Хлорофилл также придает траве зеленоватый оттенок при солнечном свете.
User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч
Saiga: Таня сидела на скамейке в парке и играла со своим любимым мячиком. Она была увлечена игрой настолько, что не замечала ничего вокруг себя. Вдруг она услышала звук приближающихся шагов. Обернувшись, она увидела молодого человека, который шел к ней по дорожке парка. Он был одет в джинсы и футболку, а его волосы были собраны в хвост.
- Привет! - сказал он Тане.
Она улыбнулась ему и кивнула головой. Молодой человек подошел ближе и сел рядом с Таней на скамейку. Они начали разговаривать о разных вещах, таких как погода, игры и фильмы. В какой-то момент молодой человек спросил у Тани, играет ли она еще в игру под названием "мяч".
- Конечно, я играю каждый день, - ответила Таня.
Молодой человек улыбнулся ей и достал из кармана свой любимый красный мяч. Он протянул его Тане и попросил ее поиграть вместе с ним. Таня взяла мяч и начала играть с молодым человеком. Это было так весело, что они забыли обо всем на свете. Мячик летал между ними, ударяясь об землю и отскакивая обратно. Они смеялись и радовались игре.
Когда игра закончилась, Таня поблагодарила своего нового друга за то, что он показал ей такую интересную игру. Молодой человек ответил, что это было для него удовольствием провести время с такой милой девушкой. Затем они попрощались и разошлись в разные стороны.
С тех пор Таня часто вспоминала эту встречу и думала о том, насколько же приятно проводить время с новыми друзьями.

v2:

  • dataset code revision 9f4145bf954082bf110e084feff93f2d59b609ee
  • wandb link
  • 5 datasets: ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_instruct_gpt4
  • gigasaiga_v2 vs gigasaiga: 96-8-72
  • gigasaiga_v2 vs gpt-3.5-turbo: 57-1-118

v1:

  • dataset code revision 7712a061d993f61c49b1e2d992e893c48acb3a87
  • wandb link
  • 7 datasets: ru_turbo_alpaca, ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_turbo_alpaca_evol_instruct (iteration 1/2), ru_instruct_gpt4
  • Datasets merging script: create_chat_set.py
  • saiga13b_v2 vs gigasaiga: 112-11-53