|
--- |
|
datasets: |
|
- IlyaGusev/ru_turbo_alpaca |
|
- IlyaGusev/ru_turbo_saiga |
|
- IlyaGusev/ru_sharegpt_cleaned |
|
- IlyaGusev/oasst1_ru_main_branch |
|
- IlyaGusev/ru_turbo_alpaca_evol_instruct |
|
- lksy/ru_instruct_gpt4 |
|
language: |
|
- ru |
|
pipeline_tag: conversational |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# Saiga2 7B, Russian LLaMA2-based chatbot |
|
|
|
Based on [LLaMA-2 13B HF](https://huggingface.co/meta-llama/Llama-2-13b-hf). |
|
|
|
This is an adapter-only version. |
|
|
|
Colab: [link](https://colab.research.google.com/drive/16xn7Zi2jli_9iPuKeM9wx53wkouzBQIf) |
|
|
|
Llama.cpp version: [link](https://huggingface.co/IlyaGusev/saiga2_13b_ggml) |
|
|
|
Training code: [link](https://github.com/IlyaGusev/rulm/tree/master/self_instruct) |
|
|
|
**WARNING 1**: Run with the development version of `transformers` and `peft`! |
|
|
|
**WARNING 2**: Avoid using V100 (in Colab, for example). Outputs are much worse in this case. |
|
|
|
**WARNING 3**: You can use the [Llama-2-13B-fp16](https://huggingface.co/TheBloke/Llama-2-13B-fp16) base model instead. |
|
|
|
```python |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
MODEL_NAME = "IlyaGusev/saiga2_13b_lora" |
|
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n" |
|
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." |
|
|
|
class Conversation: |
|
def __init__( |
|
self, |
|
message_template=DEFAULT_MESSAGE_TEMPLATE, |
|
system_prompt=DEFAULT_SYSTEM_PROMPT, |
|
start_token_id=1, |
|
bot_token_id=9225 |
|
): |
|
self.message_template = message_template |
|
self.start_token_id = start_token_id |
|
self.bot_token_id = bot_token_id |
|
self.messages = [{ |
|
"role": "system", |
|
"content": system_prompt |
|
}] |
|
|
|
def get_start_token_id(self): |
|
return self.start_token_id |
|
|
|
def get_bot_token_id(self): |
|
return self.bot_token_id |
|
|
|
def add_user_message(self, message): |
|
self.messages.append({ |
|
"role": "user", |
|
"content": message |
|
}) |
|
|
|
def add_bot_message(self, message): |
|
self.messages.append({ |
|
"role": "bot", |
|
"content": message |
|
}) |
|
|
|
def get_prompt(self, tokenizer): |
|
final_text = "" |
|
for message in self.messages: |
|
message_text = self.message_template.format(**message) |
|
final_text += message_text |
|
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id]) |
|
return final_text.strip() |
|
|
|
|
|
def generate(model, tokenizer, prompt, generation_config): |
|
data = tokenizer(prompt, return_tensors="pt") |
|
data = {k: v.to(model.device) for k, v in data.items()} |
|
output_ids = model.generate( |
|
**data, |
|
generation_config=generation_config |
|
)[0] |
|
output_ids = output_ids[len(data["input_ids"][0]):] |
|
output = tokenizer.decode(output_ids, skip_special_tokens=True) |
|
return output.strip() |
|
|
|
config = PeftConfig.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
load_in_8bit=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
MODEL_NAME, |
|
torch_dtype=torch.float16 |
|
) |
|
model.eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False) |
|
generation_config = GenerationConfig.from_pretrained(MODEL_NAME) |
|
print(generation_config) |
|
|
|
inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"] |
|
for inp in inputs: |
|
conversation = Conversation() |
|
conversation.add_user_message(inp) |
|
prompt = conversation.get_prompt(tokenizer) |
|
|
|
output = generate(model, tokenizer, prompt, generation_config) |
|
print(inp) |
|
print(output) |
|
print() |
|
print("==============================") |
|
print() |
|
``` |
|
|
|
Examples: |
|
``` |
|
User: Почему трава зеленая? |
|
Saiga: Зеленый цвет растений обусловлен наличием пигмента хлорофилла в их листьях. Хлорофилл содержит железо, которое способно поглощать световой волны красного, оранжевого и желтого цвета, а отражает световые волны зеленого цвета. Таким образом, зеленый цвет является результатом процесса фотосинтеза, который происходит в листьях растений. |
|
``` |
|
|
|
``` |
|
User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч |
|
Saiga: Однажды в парке на улице Ленина произошло невероятное событие. В тот день, когда все жители города были заняты своими делами, Таня решила отправиться на прогулку. Она была очень веселой и радостной, потому что еще накануне она получила отличные оценки за успешную защиту курсовой работы. |
|
Перед тем как выйти из дома, Тане пришла идея взять с собой мяч для игры в футбол. Она знала, что в парке есть хорошая площадка для этого вида спорта, поэтому решила воспользоваться этим прекрасным временем. |
|
Когда Таня подошла к парку, она заметила множество людей, которые играли в различные виды спорта. Некоторые стояли у столов для настольного тенниса, другие – на кортах для баскетбола или волейбола. Но ни один из них не был занят футболом. |
|
Так как Тане было очень хотелось сыграть в футбол, она решила начать самостоятельную игру. Она бросила мяч в воздух и стала бегать за ним, пытаясь его достать. Однако, каждый раз, когда она подбиралась к мячу, он быстро летел далеко от нее. |
|
Вскоре к Тане подошел молодой парень, который также играл в футбол. Он предложил ей стать её партнером и помочь ей в игре. Тане была рада этому предложению, так как она не могла играть одна. |
|
Игра продолжалась уже несколько часов. Молодой парень и Таня перемещались по всей площадке, стараясь забить голы друг другу. Их команды менялись каждый раз, когда они забивали мяч в противоположные ворота. |
|
Но внезапно, когда Тане думала, что игра уже закончена, она заметила, что мяч исчез. Она и ее партнер начали искать его по всей площадке, но никаких следов не находили. |
|
Наконец, после долгого поисков, Тане заметила, что мяч находится в глубине кустов. Она и ее партнер решили проникнуть внутрь, чтобы найти его. |
|
Через некоторое время они нашли мяч, который был спрятан в густом кусте. Когда они выбрались из него, они обнаружили, что их путь ведет к большому дереву. |
|
Дерево было очень высоким и красивым, и Тане сразу же поняла, что это было место, где она должна остаться. Она решила, что будет здесь играть в футбол каждую субботу вместе со своим новым партнером. |
|
Так произошло, что благодаря этой случайной встрече, Тане нашла своего нового друга и новое увлечение. С тех пор она проводила каждую субботу в этом парке, играя в футбол и наслаждаясь прекрасными видами. |
|
|
|
``` |
|
|
|
v1: |
|
- dataset code revision 7712a061d993f61c49b1e2d992e893c48acb3a87 |
|
- wandb [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/848s9kbi) |
|
- 7 datasets: ru_turbo_alpaca, ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_turbo_alpaca_evol_instruct (iteration 1/2), ru_instruct_gpt4 |
|
- Datasets merging script: [create_chat_set.py](https://github.com/IlyaGusev/rulm/blob/e4238fd9a196405b566a2d5838ab44b7a0f4dc31/self_instruct/src/data_processing/create_chat_set.py) |
|
- saiga2_13b vs saiga13b: 79-2-95 |